Downwind and Out: The Strategic Dispersion of Power Plants and Their Pollution

SBCA, March 2021

John M. Morehouse & Edward Rubin

Air Quality Regulation

Air-quality regulation in the US has typically followed a federalist approach.

The Clean Air Act of 1963 (and subsequent amendments):

Air Quality Regulation

Air-quality regulation in the US has typically followed a federalist approach.

The Clean Air Act of 1963 (and subsequent amendments):

- **Federal** agencies set national ambient air quality standards (NAAQS)
- **State** governments enforce NAAQS (setting implementation plans, among other things)
- **Local** governments monitor air quality and participate in siting polluters/monitors

Air Quality Regulation

Air-quality regulation in the US has typically followed a federalist approach.

The Clean Air Act of 1963 (and subsequent amendments):

- **Federal** agencies set national ambient air quality standards (NAAQS)
- **State** governments enforce NAAQS (setting implementation plans, among other things)
- **Local** governments monitor air quality and participate in siting polluters/monitors

Problem: Air pollution can travel long distances and not all counties are monitored

• Regulation & enforcement are complicated!

This paper has 3 main goals:

This paper has 3 main goals:

1. Describe the geography of a major class of polluters: power plants

This paper has 3 main goals:

- **1.** Describe the geography of a major class of polluters: power plants
- **2.** Identify reasons (both strategic *and* non-strategic) for observed patterns

This paper has 3 main goals:

- 1. Describe the geography of a major class of polluters: power plants
- **2.** Identify reasons (both strategic *and* non-strategic) for observed patterns
- **3.** Illustrate the extent of the pollution-transport problem

This paper has 3 main goals:

- **1.** Describe the geography of a major class of polluters: power plants
- **2.** Identify reasons (both strategic *and* non-strategic) for observed patterns
- 3. Illustrate the extent of the pollution-transport problem

Why? Air-pollution regulation and monitoring is fraught with complexity.

We shed light on additional challenges regulators face under the current, federalist system.

Literature

In general, our work is related to two strands of literature:

Strategy and the CAA

Literature

In general, our work is related to two strands of literature:

Strategy and the CAA

- Downwind siting for polluters as a strategy (*e.g.* Monogan III et. al (2017))
- Strategic abatement decisions (*e.g.* Zou, 2020)
- Strategic *monitor* placement (*e.g.* Grainger et. al, 2018)

Literature

In general, our work is related to two strands of literature:

Strategy and the CAA

- Downwind siting for polluters as a strategy (*e.g.* Monogan III et. al (2017))
- Strategic abatement decisions (*e.g.* Zou, 2020)
- Strategic *monitor* placement (*e.g.* Grainger et. al, 2018)

Pervasiveness and problems with pollution transfer

- Sergi et. al (2020), Wang et. al (2020), Tessum et. al (2017)
 - Quantify extent of pollution transport in general + costs (health damages)

The Geography of US Power Plants

Data Sources

Generator Data: Emissions & Generation Integrated Database (eGRID) and EPAs EmPOWER Air Data Challenge.

Data Sources

Generator Data: Emissions & Generation Integrated Database (eGRID) and EPAs EmPOWER Air Data Challenge.

Geography:

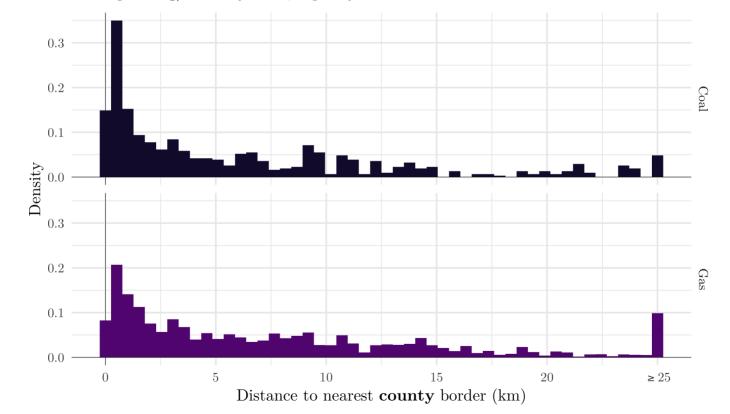
- US Census Bureau Tiger/Line shapefiles for county, state, and water features.
- EPA's Greenbook NAYRO file for county non-attainment histories

Data Sources

Generator Data: Emissions & Generation Integrated Database (eGRID) and EPAs EmPOWER Air Data Challenge.

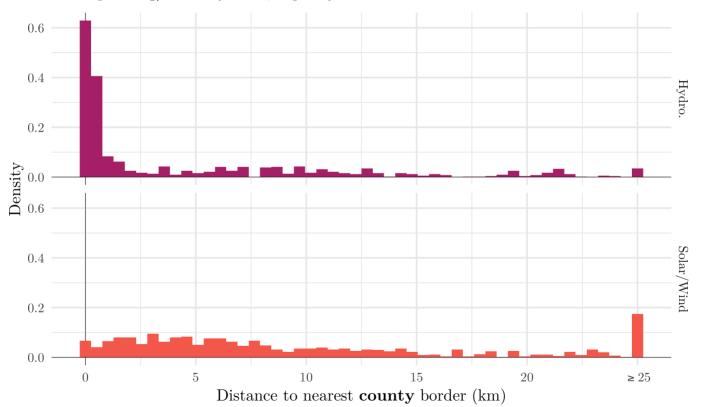
Geography:

- US Census Bureau Tiger/Line shapefiles for county, state, and water features.
- EPA's Greenbook NAYRO file for county non-attainment histories


Meteorology: NOAA's North American Regional Reanalysis (NARR) daily data

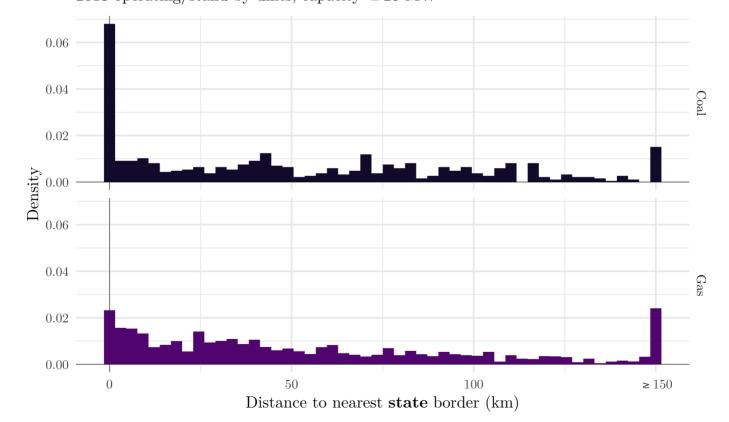
Historic wind patterns at various pressure levels. 32km \times 32km grid cells across contigous US

Distances to County Borders

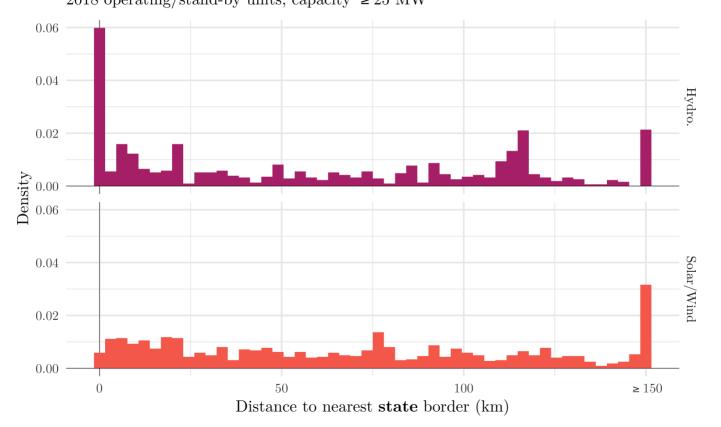

Panel A: Distance to nearest county border

2018 operating/stand-by units, capacity ≥ 25 MW

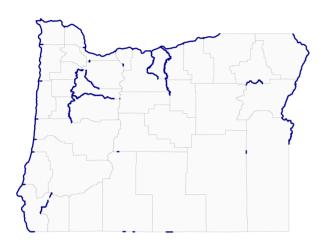
Distances to County Borders


Panel A: Distance to nearest county border

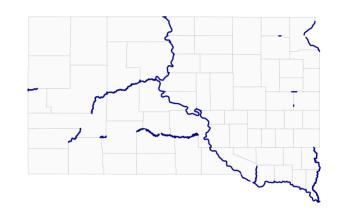
2018 operating/stand-by units, capacity ≥ 25 MW

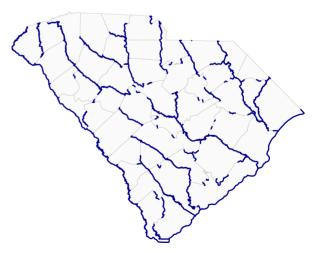

Distances to State Borders

Panel B: Distance to nearest **state** border 2018 operating/stand-by units, capacity ≥ 25 MW



Distances to State Borders


Panel B: Distance to nearest **state** border 2018 operating/stand-by units, capacity ≥ 25 MW



Water Borders: Example

We can't say strategy **caused** border siting.

We can't say strategy **caused** border siting.

Question: Do power-plants (excluding maybe wind) use the ratio of upwind/downwind area within their own county/state to produce electricity?

We can't say strategy **caused** border siting.

Question: Do power-plants (excluding maybe wind) use the ratio of upwind/downwind area within their own county/state to produce electricity?

- Seems unlikely
- This is the basis for our identification strategy.

We can't say strategy **caused** border siting.

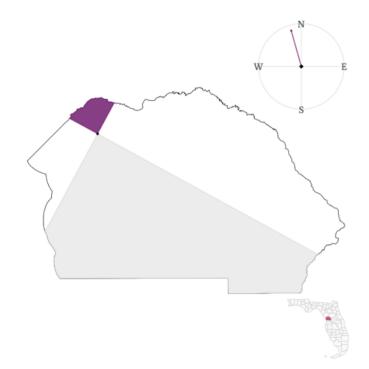
Question: Do power-plants (excluding maybe wind) use the ratio of upwind/downwind area within their own county/state to produce electricity?

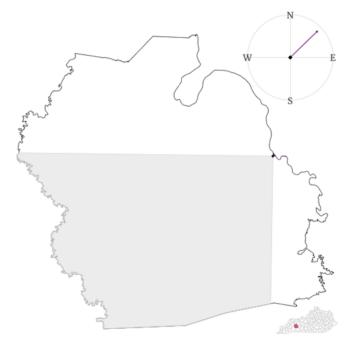
- Seems unlikely
- This is the basis for our identification strategy.
- Why would a smaller downwind area within a county be advantageous for a polluter? **Emissions will exit the jurisdiction faster**.

We can't say strategy **caused** border siting.

Question: Do power-plants (excluding maybe wind) use the ratio of upwind/downwind area within their own county/state to produce electricity?

- Seems unlikely
- This is the basis for our identification strategy.
- Why would a smaller downwind area within a county be advantageous for a polluter? **Emissions will exit the jurisdiction faster**.


Main Idea: In the absence of regulatory avoidance, it should be a 50–50 flip whether the county's area downwind of the plant (in the EGU's county of residence) is larger or smaller than the area upwind.


- **Focus**: coal. Strongest incentive to avoid regulation.
- **Placebo**: natural gas. Less incentive to avoid regulation.

Downwind vs. Upwind Area

(a) Plant 628

(b) Plant 1378

Our test is implemented via a Fisher's exact test

• Sharp Null: no strategic siting to reduce downwind area

Our test is implemented via a Fisher's exact test

- Sharp Null: no strategic siting to reduce downwind area
- Test stat $n_s \stackrel{H_0}{\sim} B(N_T,.5)$
 - $\circ n_s$: # plants for whom downind area < upwind area
 - $\circ N_T$: total # plants (within fuel type)

$$ullet \ p(n_s) = \sum\limits_{x=n_s}^{N^T} {N_T \choose x} imes 0.5^{N_T}$$

Our test is implemented via a Fisher's exact test

- Sharp Null: no strategic siting to reduce downwind area
- Test stat $n_s \stackrel{H_0}{\sim} B(N_T,.5)$
 - $\circ n_s$: # plants for whom downind area < upwind area
 - $\circ N_T$: total # plants (within fuel type)

$$ullet \ p(n_s) = \sum\limits_{x=n_s}^{N^T} {N_T \choose x} imes 0.5^{N_T}$$

+ Simple and plausible identifying assumption

+ Calculate *exact* p-values. No parameteric assumptions required!

+ Convenient falsificaton test: Natural gas

Our test is implemented via a Fisher's exact test

- Sharp Null: no strategic siting to reduce downwind area
- Test stat $n_s \stackrel{H_0}{\sim} B(N_T,.5)$
 - $\circ n_s$: # plants for whom downind area < upwind area
 - $\circ N_T$: total # plants (within fuel type)

$$ullet \ p(n_s) = \sum\limits_{x=n_s}^{N^T} {N_T \choose x} imes 0.5^{N_T}$$

+ Simple and plausible identifiying assumption

+ Calculate *exact* p-values. No parameteric assumptions required!

+ Convenient falsificaton test: Natural gas

Major drawback: cannot capture more nuanced strategy

Strategic Siting: Main Results

	Coal-fueled plants			Natural-gas-fueled plants		
	(1)	(2)	(3)	(4)	(5)	(6)
	All	Post-CAA	Pre-CAA	All	Post-CAA	Pre-CAA
Panel a: Siting stra	ategically w	vithin count	У			
Count	515	286	229	1,258	995	263
Count strategic	297	165	132	612	482	130
Percent strategic	57.67%	57.69%	57.64%	48.65%	48.44%	49.43%
Fisher's exact tes	t of H _o : In- c	ounty down	wind area \geq u	pwind area		
Under H _o : E[Perc	ent strategic	: County] = 3	50%			
<i>P</i> -value	0.0003	0.0054	0.0122	0.8381	0.8448	0.5974

Strategic Siting: Main Results

	Coal-fueled plants			Natural-gas-fueled plants		
	(1)	(2)	(3)	(4)	(5)	(6)
	All	Post-CAA	Pre-CAA	All	Post-CAA	Pre-CAA
Panel b: Siting stra	ategically v	vithin state				
Count	515	286	229	1,258	995	263
Count strategic	279	152	127	575	466	109
Percent strategic	54.17%	53.15%	55.46%	45.71%	46.83%	41.44%
Fisher's exact tes	t of H _o : In- c	ounty down	wind area $\geq u$	pwind area		
Under H _o : E[Perc	ent strategic	: State] = 50	%	_		
P-value	0.0321	0.1574	0.0563	0.9989	0.9788	0.9978

The Geography of US Coal Emissions

We quantify the nature of the pollution transfer problem

Overview

We quantify the nature of the pollution transfer problem.

Model: **HY**brid **S**ingle-**P**article **L**agrangian **I**ntegrated **T**rajectory (HYSPLIT)

- Atmospheric dispersion model. Heavily vetted by NOAA.
- Performs better than many other models (such as InMAP) for *long-distance* pollution transport modeling.

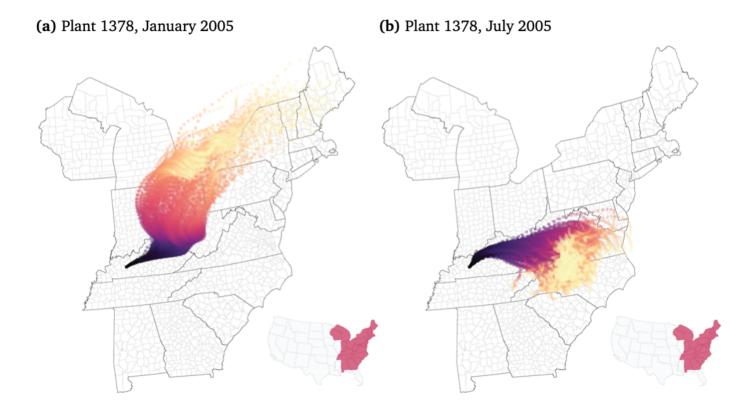
Overview

We quantify the nature of the pollution transfer problem.

Model: **HY**brid **S**ingle-**P**article **L**agrangian **I**ntegrated **T**rajectory (HYSPLIT)

- Atmospheric dispersion model. Heavily vetted by NOAA.
- Performs better than many other models (such as InMAP) for *long-distance* pollution transport modeling.
- Coal-based particles will travel much further than other sources of PM.

Hysplit: Goals

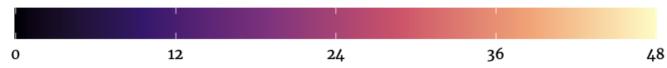

We do the following:

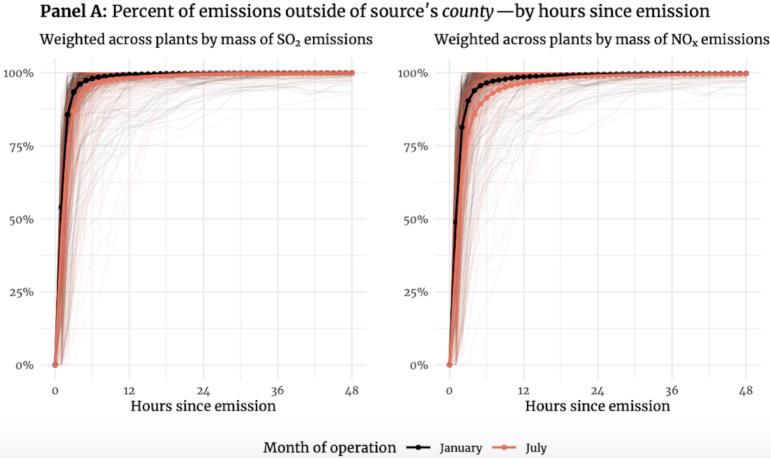
1) Quantify how quickly coal-based particles leave their own county and state (it's fast).

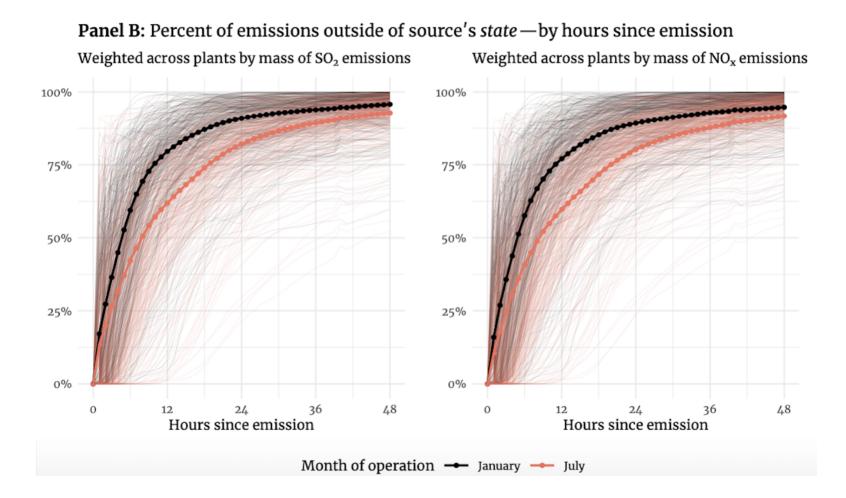
2) Quantify the proportion of coal-based emissions that are from other counties/states in any given county/state.

3) Illustrate the implications of 1) and 2) with case studies.

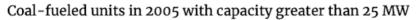

Example Plants

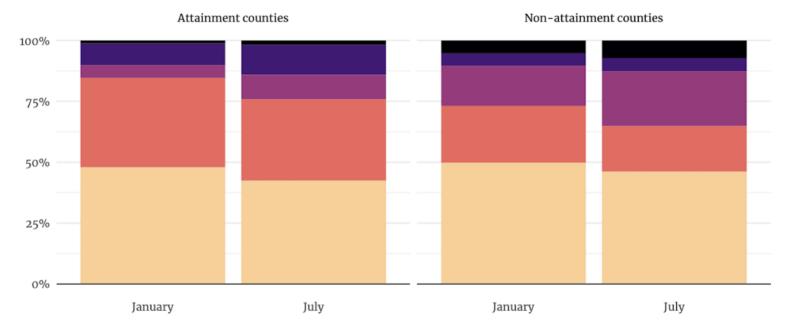

Hours since release


Example Plants


Hours since release

Emissions Transport: Speed




Emissions Transport: Speed

Emissions Transport: Shares

Panel A: Sources of local coal-based particles, weighted by mass of SO₂ emissions

Location of emissions' source

Same county

Other county in same state Source county: In attainment

Other county in same state Source county: Non-attainment

Other county in other state Source county: In attainment Other county in other state Source county: Non-attainment

Discussion

What did we do?

Main contributions:

- Descriptive results on the geography of physical power plants *and* their emissions.
 - Causal evidence of coal plants strategically locating to minimize downwind area.
- Clean Air Act did not seem to impact strategic siting.
- Descriptive results on pervasiveness of pollution transport problem from coal powered plants.

Thank you!

email: jmorehou@uoregon.edu

web: www.johnmmorehouse.com