Downwind and Out: The Strategic Dispersion of Power Plants and Their Pollution

John M. Morehouse & Edward Rubin

🤝 OSWEET, May 2021 🦤

Air-Quality Regulation

Air-quality regulation in the US has typically followed a **federalist** approach.

Air-Quality Regulation

Air-quality regulation in the US has typically followed a **federalist** approach.

The Clean Air Acts of 1963 and 1970 (and subsequent amendments):

- Federal agencies set national ambient air quality standards (NAAQS)
- **State** governments/agencies coordinate plans to meet NAAQS
- Local governments monitor AQ and help site polluters/monitors

Air-Quality Regulation

Air-quality regulation in the US has typically followed a **federalist** approach.

The Clean Air Acts of 1963 and 1970 (and subsequent amendments):

- Federal agencies set national ambient air quality standards (NAAQS)
- **State** governments/agencies coordinate plans to meet NAAQS
- Local governments monitor AQ and help site polluters/monitors

Problems:

- Regulated units strategically respond to this regulatory patchwork.
 Coal-generated air pollution travels long distances.
- \implies Attribution, regulation, & enforcement are complicated!

An example of transport's regulatory complexity: The Huntington-Ashland (WV-KY-OH) non-attainment area

We have 3 main goals:

We have 3 main goals:

1. Describe the **geography of power plants** (major class of polluters).

We have 3 main goals:

- **1.** Describe the **geography of power plants** (major class of polluters).
- **2.** Test for **strategic siting** among power plants.

We have 3 main goals:

- **1.** Describe the **geography of power plants** (major class of polluters).
- 2. Test for strategic siting among power plants.
- **3.** Illustrate the extent of the **pollution-transport problem** w/ coal plants.

We have 3 main goals:

- **1.** Describe the **geography of power plants** (major class of polluters).
- 2. Test for strategic siting among power plants.
- **3.** Illustrate the extent of the **pollution-transport problem** w/ coal plants.

So what?

In this paper, we

- Highlight **regulatory challenges** in the current, federalist system.
- Identify **strategic responses** to regulatory oversight.
- Underscore the importance of **transport-focused regulation**.

An example of **the transport problem** for coal emissions

An example of **the transport problem** for coal emissions

Literature

In general, our work is related to three strands of literature:

[1] Strategy and the CAA

- Downwind siting for polluters as a strategy (*e.g.* Monogan III et al. (2017))
- Strategic abatement decisions (*e.g.* Zou, 2020)
- Strategic *monitor* placement (*e.g.* Grainger et al., 2018)
- Strategic monitoring (*e.g.* Mu, Rubin, and Zou, 2021)

Literature

In general, our work is related to three strands of literature:

[1] Strategy and the CAA

[2] The problems of pollution transfer

- Tessum et al. (2017)
- Sergi et al. (2020)
- Wang et al. (2020)

Literature

In general, our work is related to three strands of literature:

[1] Strategy and the CAA

[2] The problems of pollution transfer

[3] The pollution-haven hypothesis

- Cole (2004)
- Levinson (2008)
- Millimet and Roy (2015)
- (Among many others)

The Geography of Power Plants

Data Sources

Generator Data:

- EPA **CAMD** (Clean Air Markets Division)
- EPA **eGRID** (Emissions & Generation Integrated Database)

Geography:

- US Census Bureau **TIGER/Line** and **cartographic boundary** shapefiles for county, state, and water features
- EPA's **Greenbook NAYRO** for county non-attainment histories

Meteorology: NOAA's NARR (North American Regional Reanalysis)

- Historic wind patterns by pressure levels.
- + 32km \times 32km grid cells across contigous US

Panel A: Distance to nearest county border

2018 operating/stand-by units, capacity $\geq 25~\mathrm{MW}$

Panel A: Distance to nearest county border

9 / 21

Panel B: Distance to nearest state border

2018 operating/stand-by units, capacity $\geq 25~\mathrm{MW}$

Panel B: Distance to nearest state border

2018 operating/stand-by units, capacity $\geq 25~\mathrm{MW}$

Some borders have water (Oregon)

Some borders have water (South Carolina)

Testing for strategic siting

There are two (non-exclusive) reasons plants might site near borders:

- 1. "non-strategic" inputs to production and transportation (*e.g.*, water)
- 2. **strategic** exporting of emissions' (external) costs (regulatory avoidance)

Testing for strategic siting

There are two (non-exclusive) reasons plants might site near borders:

- 1. "non-strategic" inputs to production and transportation (*e.g.*, water)
- 2. **strategic** exporting of emissions' (external) costs (regulatory avoidance)

Question: Do coal-fired power plants use the ratio of upwind/downwind area within their own admin. unit to produce or transport electricity?

Testing for strategic siting

There are two (non-exclusive) reasons plants might site near borders:

- 1. "non-strategic" inputs to production and transportation (*e.g.*, water)
- 2. **strategic** exporting of emissions' (external) costs (regulatory avoidance)

Question: Do coal-fired power plants use the ratio of upwind/downwind area within their own admin. unit to produce or transport electricity? (Unlikely.)

Strategic Siting: Identification

Main Idea: In the absence of strategy, it's a 50–50 flip whether the county's area **upwind** of the plant is larger or smaller than its **downwind** area.

• Focus on coal-fueled plants

Strongest incentive to avoid regulation and/or export emissions downwind

• **Placebo: Natural gas fueled plants** Face much lower incentives to export/avoid

Strategic Siting: Identification

Main Idea: In the absence of strategy, it's a 50–50 flip whether the county's area **upwind** of the plant is larger or smaller than its **downwind** area.

• Focus on coal-fueled plants

Strongest incentive to avoid regulation and/or export emissions downwind

• **Placebo: Natural gas fueled plants** Face much lower incentives to export/avoid

Identifying assumption:

There are no non-strategic, latent features used by plants use in siting decisions that also correlate w/ the ratio of upwind and downwind areas.

- Social/political/physical processes don't typically use the ratio of upwind to downwind areas within a county or state.
- Nat. gas face many similar input/transmission constraints. This latent feature would need to be important to coal & absent from gas.

This quantity is basically an intersection between meteorologic and admin./carto. properties.

Our test is implemented via a Fisher's exact test

• Sharp Null: no strategic siting to reduce downwind area

Our test is implemented via a Fisher's exact test

- Sharp Null: no strategic siting to reduce downwind area
- Test stat $n_s \stackrel{H_0}{\sim} B(N_T,.5)$
 - $\circ n_s$: # plants for whom downind area < upwind area
 - $\circ N_T$: total # plants (within fuel type)

•
$$p(n_s) = \sum\limits_{x=n_s}^{N^T} {N_T \choose x} imes 0.5^{N_T}$$

Our test is implemented via a Fisher's exact test

- Sharp Null: no strategic siting to reduce downwind area
- Test stat $n_s \stackrel{H_0}{\sim} B(N_T,.5)$
 - $\circ n_s$: # plants for whom downind area < upwind area
 - $\circ N_T$: total # plants (within fuel type)

$$ullet \ p(n_s) = \sum\limits_{x=n_s}^{N^T} {N_T \choose x} imes 0.5^{N_T}$$

+ Simple and plausible identifying assumption

+ Calculate *exact* p-values. No parameteric assumptions required!

+ Convenient falsificaton test: Natural gas

Our test is implemented via a Fisher's exact test

- Sharp Null: no strategic siting to reduce downwind area
- Test stat $n_s \stackrel{H_0}{\sim} B(N_T,.5)$
 - $\circ \,\, n_s:$ # plants for whom downind area < upwind area
 - $\circ N_T$: total # plants (within fuel type)

$$ullet \ p(n_s) = \sum\limits_{x=n_s}^{N^T} {N_T \choose x} imes 0.5^{N_T}$$

+ Simple and plausible identifying assumption

+ Calculate *exact* p-values. No parameteric assumptions required!

+ Convenient falsificaton test: Natural gas

Major drawback: cannot capture more nuanced strategy

Strategic Siting: Main Results

	County		State	
	Coal	Natural Gas	Coal	Natural Gas
Count	515	1,258	515	1,258
Count strategic	297	612	279	575
Percent strategic	57.67%	48.65%	54.17%	45.71%
Fisher's exact test of H_o : downwind area \geq upwind area				
Under H_o : E[Percent strategic] = 50%				
<i>P</i> -value	0.0003	0.8381	0.0321	0.9989

The Geography of Coal Emissions

Overview

We quantify the nature of the pollution transfer problem using **HYSPLIT**

- Particle trajectory model; heavily vetted by NOAA.
- Especially helpful for *long-distance* pollution transport modeling.
- **↑** Coal EGU-based particles can travel long distances (*tall* stacks).

Overview

We quantify the nature of the pollution transfer problem using **HYSPLIT**

- Particle trajectory model; heavily vetted by NOAA.
- Especially helpful for *long-distance* pollution transport modeling.
- **↑** Coal EGU-based particles can travel long distances (*tall* stacks).

Using HYSPLIT, we can see **where particles departing coal plants travel** ... and find the **sources** of a region's coal-based emissions.

Example of HYSPLIT particle trajectories

Exporting emissions

Percent of emissions outside source **county** by hours since release

Weighted across plants by mass of NO_x emissions

Month of operation - January July

Exporting emissions

Percent of emissions outside source state by hours since release

Weighted across plants by mass of NO_x emissions

Month of operation - January July

Sources of local emissions

Panel A: Sources of local coal-based particles, weighted by mass of SO_2 emissions

Coal-fueled units in 2005 with capacity greater than 25 MW

Conclusions

We find

- 1. Many power plants in the US **sited near borders** (county and state).
- 2. **Coal plants strategically sited** to reduce downwind exposure. Nat. gas plants did not.
- 3. Coal plants' pollution quickly leaves origin counties and states.

Implications

- 1. Geographic dispersion of inputs complicates decentralized regulations.
- 2. Regulated units have strategically responded (exporting emissions).
- 3. Transport-based regulations will be key to internalizing costs.

Thank you!

jmorehou@uoregon.edu

www.johnmmorehouse.com