Carbon Taxes in Spatial Equilibrium

🐳 John M. Morehouse 🦤

Federal Reserve Board

 ${
m CO}_2$ creates well recognized global externalities

Economists: widespread support for carbon taxes

 ${
m CO}_2$ creates well recognized global externalities

Economists: widespread support for carbon taxes

The public:

Why the discrepancy between policy preferences of economists and voters?

 CO_2 creates well recognized global externalities

Economists: widespread support for carbon taxes

The public:

Why the discrepancy between policy preferences of economists and voters?

...the failure to create a Pareto improvement is due to a prediction problem; lump-sum transfers can only undo the distribution of burdens if they can be targeted precisely (Sallee, 2019)

CO_2 creates well recognized global externalities

Economists: widespread support for carbon taxes

The public:

Why the discrepancy between policy preferences of economists and voters?

...the failure to create a Pareto improvement is due to a prediction problem; lump-sum transfers can only undo the distribution of burdens if they can be targeted precisely (Sallee, 2019)

Insight: Need to know *who* individuals are, and *where* they are for a Pareto improvement from efficiency-enhancing policy

CO_2 creates well recognized global externalities

Economists: widespread support for carbon taxes

The public:

Why the discrepancy between policy preferences of economists and voters?

...the failure to create a Pareto improvement is due to a prediction problem; lump-sum transfers can only undo the distribution of burdens if they can be targeted precisely (Sallee, 2019)

Insight: Need to know *who* individuals are, and *where* they are for a Pareto improvement from efficiency-enhancing policy

This paper: Who bears the burden from carbon pricing? Where are they?

Welfare effects from a carbon tax are hard to capture

- Heterogeneity creates differences in initial burden of the tax
- Households can respond to these differences by moving, changing consumption, etc...
- These responses affect wages, rents, goods prices, causing further changes!

Welfare effects from a carbon tax are hard to capture

- Heterogeneity creates differences in initial burden of the tax
- Households can respond to these differences by moving, changing consumption, etc...
- These responses affect wages, rents, goods prices, causing further changes!

Carbon tax incidence varies across cities, sectors, and education levels. Why?

Welfare effects from a carbon tax are hard to capture

- Heterogeneity creates differences in initial burden of the tax
- Households can respond to these differences by moving, changing consumption, etc...
- These responses affect wages, rents, goods prices, causing further changes!

Carbon tax incidence varies across cities, sectors, and education levels. Why?

1) Geographic industrial concentration varies across the US (Ellison et. al, 2010)

2) Industries vary in energy-use intensities and input substitutability (many papers)

Welfare effects from a carbon tax are hard to capture

- Heterogeneity creates differences in initial burden of the tax
- Households can respond to these differences by moving, changing consumption, etc...
- These responses affect wages, rents, goods prices, causing further changes!

Carbon tax incidence varies across cities, sectors, and education levels. Why?

1) Geographic industrial concentration varies across the US (Ellison et. al, 2010)

2) Industries vary in energy-use intensities and input substitutability (many papers)

3) Variation in climate causes variation in HH energy use (Glaeser & Kahn, 09)

4) Carbon efficiency of local power plants varies across the US

Welfare effects from a carbon tax are hard to capture

- Heterogeneity creates differences in initial burden of the tax
- Households can respond to these differences by moving, changing consumption, etc...
- These responses affect wages, rents, goods prices, causing further changes!

Carbon tax incidence varies across cities, sectors, and education levels. Why?

1) Geographic industrial concentration varies across the US (Ellison et. al, 2010)

2) Industries vary in energy-use intensities and input substitutability (many papers)

3) Variation in climate causes variation in HH energy use (Glaeser & Kahn, 09)

4) Carbon efficiency of local power plants varies across the US

Non-College-educated households:

- Spend larger share of income on energy (estimates)
- Work in more carbon-intensive sectors (Känzig, 2021)
- Are less mobile across occupations and locations (this paper + others)

What I do

Build a general equilibrium model of US local labor markets

- Multiple locations and sectors: emissions, wages, and rents are endogenous
- Imperfectly mobile households choose location and sector as a static discrete choice
- Model captures: household emissions and firm emissions from electricity and nat. gas

What I do

Build a general equilibrium model of US local labor markets

- Multiple locations and sectors: emissions, wages, and rents are endogenous
- Imperfectly mobile households choose location and sector as a static discrete choice
- Model captures: household emissions and firm emissions from electricity and nat. gas

Discipline model via 2-step estimator proposed in BLP (2004) using:

- American Community Survey
- Repeated cross-sections of the U.S. Census

What I do

Build a general equilibrium model of US local labor markets

- Multiple locations and sectors: emissions, wages, and rents are endogenous
- Imperfectly mobile households choose location and sector as a static discrete choice
- Model captures: household emissions and firm emissions from electricity and nat. gas

Discipline model via 2-step estimator proposed in BLP (2004) using:

- American Community Survey
- Repeated cross-sections of the U.S. Census

Simulate a national, uniform carbon tax

- Decompose results and demonstrate considerable heterogeneity
- Simulate carbon tax with transfer payments

Literature

I am not the first to recognize the **distributional impacts of carbon pricing**:

- CGE model w/ 15k HHs to recover incidence (Rausch et al., 2011)
- Employment impacts from BC carbon tax (Yamazaki, 2018)
- Employment effects in general eq. (Hafstead & Williams, 2018)
- Intergenerational Distributional Impacts (Fried, Novan, Peterman, 2018)
- CGE model with two cases: perfect mobility and perfect immobility (Castellanos & Heutel, 2019)

Literature

I am not the first to recognize the **distributional impacts of carbon pricing**:

- CGE model w/ 15k HHs to recover incidence (Rausch et al., 2011)
- Employment impacts from BC carbon tax (Yamazaki, 2018)
- Employment effects in general eq. (Hafstead & Williams, 2018)
- Intergenerational Distributional Impacts (Fried, Novan, Peterman, 2018)
- CGE model with two cases: perfect mobility and perfect immobility (Castellanos & Heutel, 2019)

Quantitative Spatial Equilibrium (QSE) Models:

- Endogeneous amenities and college wage premia (Diamond, 2015)
- Impacts of immigration on wages (Piyapromdee, 2019)
- Origins and determinants of urban gentrification (Su, 2021)
- Land Use regs and HH carbon emissions (Colas & Morehouse, 2021)

Road map

Intro: 🔽

Model

Data + Estimation

Carbon Taxes

Model Overview

Households

- Static; discrete choice: locations & sectors
- Consume numeraire, housing, and energy

Households

- Static; discrete choice: locations & sectors
- Consume numeraire, housing, and energy

Locations

- Wages, rents, and energy prices (endogenous)
- Carbon efficiency of power plants
- Amenities (location-specific consumption)

Households

- Static; discrete choice: locations & sectors
- Consume numeraire, housing, and energy

Locations

- Wages, rents, and energy prices (endogenous)
- Carbon efficiency of power plants
- Amenities (location-specific consumption)

Firms

- Use energy, labor, capital in prod.
- Vary across sector by: Input use intensities & elasticities of sub

Households

- Static; discrete choice: locations & sectors
- Consume numeraire, housing, and energy

Locations

- Wages, rents, and energy prices (endogenous)
- Carbon efficiency of power plants
- Amenities (location-specific consumption)

Firms

- Use energy, labor, capital in prod.
- Vary across sector by: Input use intensities & elasticities of sub

- Carbon price ⇒ higher energy prices
 - Price
 <u>A</u> depends on carbon efficiency of regional power plants

Households

- Static; discrete choice: locations & sectors
- Consume numeraire, housing, and energy

Locations

- Wages, rents, and energy prices (endogenous)
- Carbon efficiency of power plants
- Amenities (location-specific consumption)

Firms

- Use **energy**, labor, capital in prod.
- Vary across sector by: Input use intensities & elasticities of sub

- Carbon price ⇒ higher energy prices
 - $\circ~$ Price Δ depends on carbon efficiency of regional power plants
 - Energy prices enter utility for home consumption and production function

Households

- Static; discrete choice: locations & sectors
- Consume numeraire, housing, and energy

Locations

- Wages, rents, and energy prices (endogenous)
- Carbon efficiency of power plants
- Amenities (location-specific consumption)

Firms

- Use energy, **labor**, capital in prod.
- Vary across sector by: Input use intensities & elasticities of sub

- Carbon price ⇒ higher energy prices
 - $\circ\,$ Price Δ depends on carbon efficiency of regional power plants
 - Energy prices enter utility for home consumption and production function
- Change in energy prices ⇒
 change in wages
 - This change varies by city + sector (due to differences in prod. params)

Households

- Static; discrete choice: locations & sectors
- Consume numeraire, housing, and energy

Locations

- Wages, rents, and energy prices (endogenous)
- Carbon efficiency of power plants
- Amenities (location-specific consumption)

Firms

- Use energy, labor, capital in prod.
- Vary across sector by: Input use intensities & elasticities of sub

- Carbon price ⇒ higher energy prices
 - $\circ~$ Price Δ depends on carbon efficiency of regional power plants
 - Energy prices enter utility for home consumption and production function
- Change in energy prices ⇒ change in wages
 - This change varies by city + sector (due to differences in prod. params)
- Change in wages New location-sector choices further change prices.

Road map: progress

Intro: 🔽

Model:

- Overview: 🔽
- Labor Supply
- Labor (and Energy) demand
- Fuel Supply and Rents

Data + Estimation

Carbon Taxes

Model: Labor Supply

Indirect utility for HH i of educ. level e in city j, sector n:

$$V_{ijn} = eta_e^w \log(W_{ejn}) - eta_e^r \log R_j - \sum_m lpha_{ej}^m \log P_j^m + f(j, \mathcal{B}_i) + \hat{\lambda}_{ijn}$$

- W_{ejn} is income, R_j is rents
- P^m_j is price of energy type $m \in \{ ext{elec,gas,oil}\}$
- $f(j, \mathcal{B}_i)$ moving cost as a function of euclidean distance from j to i's birthstate

Model: Labor Supply

Indirect utility for HH i of educ. level e in city j, sector n:

$$V_{ijn} = eta_e^w \log(W_{ejn}) - eta_e^r \log R_j - \sum_m lpha_{ej}^m \log P_j^m + f(j, \mathcal{B}_i) + \hat{\lambda}_{ijn}$$

- W_{ejn} is income, R_j is rents
- P^m_j is price of energy type $m \in \{ ext{elec,gas,oil}\}$
- $f(j,\mathcal{B}_i)$ moving cost as a function of euclidean distance from j to i's birthstate

$$\bullet \ f(\cdot) = \gamma_e^{div}\mathbb{I}\left(j \in \mathcal{B}_i^{div}\right) + \gamma_e^{\mathrm{dist}}\phi\left(j, \mathcal{B}_i^{st}\right) + \gamma_e^{\mathrm{dist}2}\phi^2\left(j, \mathcal{B}_i^{st}\right)$$

Model: Labor Supply

Indirect utility for HH i of educ. level e in city j, sector n:

$$V_{ijn} = eta_e^w \log(W_{ejn}) - eta_e^r \log R_j - \sum_m lpha_{ej}^m \log P_j^m + f(j, \mathcal{B}_i) + \hat{\lambda}_{ijn}$$

- W_{ejn} is income, R_j is rents
- P_j^m is price of energy type $m \in \{ ext{elec,gas,oil}\}$
- $f(j,\mathcal{B}_i)$ moving cost as a function of euclidean distance from j to i's birthstate

$$\bullet \ f(\cdot) = \gamma_e^{div}\mathbb{I}\left(j \in \mathcal{B}_i^{div}\right) + \gamma_e^{\mathrm{dist}}\phi\left(j, \mathcal{B}_i^{st}\right) + \gamma_e^{\mathrm{dist2}}\phi^2\left(j, \mathcal{B}_i^{st}\right)$$

- $\hat{\lambda}_{ijn} = \xi_{ejn} + \sigma_e \epsilon_{ijn}$ amenities:
 - ξ_{ejn} unobserved (to me), shared by all agents in educ. group/city/sector
 - $\circ~\epsilon_{ijn}$ iid pref shock, dispersion parameter σ_e

Road map: progress

Intro: 🔽

Model:

- Overview: 🗸
- Labor Supply: 🔽
- Labor (and Energy) demand
- Fuel Supply and Rents

Data + Estimation

Carbon Taxes

Firms in perfectly competitive markets produce with tech:

$$Y_{jn} = A_{jn}K^\eta_{jn}{\cal I}^{1-\eta}_{jn}$$

$$\mathcal{I}_{jn} = \left(lpha_{jn} \mathcal{E}_{jn}^{
ho_{el}^n} + (1-lpha_{jn}) \mathcal{L}_{jn}^{
ho_{el}^n}
ight)^{rac{1}{
ho_{el}^n}}$$

Firms in perfectly competitive markets produce with tech:

$$Y_{jn} = A_{jn} K^\eta_{jn} {\cal I}^{1-\eta}_{jn}$$

$$egin{aligned} \mathcal{I}_{jn} &= \left(lpha_{jn} \mathcal{E}_{jn}^{
ho_{el}^n} + (1-lpha_{jn}) \mathcal{L}_{jn}^{
ho_{el}^n}
ight)^{rac{1}{
ho_{el}^n}} \ \mathcal{E}_{jn} &= \left(\zeta_{jn} E_{jn}^{
ho_{e}^n} + (1-\zeta_{jn}) G_{jn}^{
ho_{e}^n}
ight)^{rac{1}{
ho_{e}^n}} & \mathcal{L}_{jn} &= \left(heta_{jn} C_{jn}^{
ho_{l}^n} + (1- heta_{jn}) L_{jn}^{
ho_{l}^n}
ight)^{rac{1}{
ho_{e}^n}} \end{aligned}$$

Firms in perfectly competitive markets produce with tech:

$$Y_{jn} = A_{jn} K^\eta_{jn} {\cal I}^{1-\eta}_{jn}$$

$$egin{split} \mathcal{I}_{jn} &= \left(lpha_{jn} \mathcal{E}_{jn} {}^{
ho_{el}^n} + (1-lpha_{jn}) \mathcal{L}_{jn} {}^{
ho_{el}^n}
ight)^{rac{1}{
ho_{el}^n}} \ \mathcal{E}_{jn} &= \left(\zeta_{jn} E_{jn}^{
ho_{e}^n} + (1-\zeta_{jn}) G_{jn}^{
ho_{e}^n}
ight)^{rac{1}{
ho_{e}^n}} & \mathcal{L}_{jn} &= \left(heta_{jn} C_{jn}^{
ho_{l}^n} + (1- heta_{jn}) L_{jn}^{
ho_{l}^n}
ight)^{rac{1}{
ho_{e}^n}} \end{split}$$

- E, G: Energy, Gas
- ζ : Electricity intensity

$$ho_e^n = rac{\sigma_e^n - 1}{\sigma_e^n}$$
 : EoS for energy

Firms in perfectly competitive markets produce with tech:

$$Y_{jn} = A_{jn} K^\eta_{jn} {\cal I}^{1-\eta}_{jn}$$

$$\mathcal{I}_{jn} = \left(lpha_{jn} \mathcal{E}_{jn}^{
ho_{el}^n} + (1-lpha_{jn}) \mathcal{L}_{jn}^{
ho_{el}^n}
ight)^{rac{1}{
ho_{el}^n}}$$

$$\mathcal{E}_{jn}=\left(\zeta_{jn}E_{jn}^{
ho_e^n}+(1-\zeta_{jn})G_{jn}^{
ho_e^n}
ight)^{rac{1}{
ho_e^n}}$$

- E, G: Energy, Gas
- $\zeta:$ Electricity intensity

$$ho_e^n = rac{\sigma_e^n - 1}{\sigma_e^n}:$$
 EoS for energy

$$\mathcal{L}_{jn} = \left(heta_{jn} C_{jn}^{
ho_l^n} + (1- heta_{jn}) L_{jn}^{
ho_l^n}
ight)^{rac{1}{
ho_e^n}}$$

- C, L: college, non-college labor
- $\boldsymbol{\theta}:$ educated labor intensity

$$ho_l = rac{\sigma_l - 1}{\sigma_l}:$$
 EoS for labor

Firms in perfectly competitive markets produce with tech:

$$Y_{jn} = A_{jn} K^\eta_{jn} {\cal I}^{1-\eta}_{jn}$$

where

$$\mathcal{I}_{jn} = \left(lpha_{jn} \mathcal{E}_{jn}{}^{
ho_{el}^n} + (1-lpha_{jn}) \mathcal{L}_{jn}{}^{
ho_{el}^n}
ight)^{rac{1}{
ho_{el}^n}}$$

$$\mathcal{E}_{jn}=\left(\zeta_{jn}E_{jn}^{
ho_e^n}+(1-\zeta_{jn})G_{jn}^{
ho_e^n}
ight)^{rac{1}{
ho_e^n}}$$

- E, G: Energy, Gas
- $\zeta:$ Electricity intensity

$$ho_e^n = rac{\sigma_e^n - 1}{\sigma_e^n}:$$
 EoS for energy

[Input Demand Curves]

$$\mathcal{L}_{jn} = \left(heta_{jn} C_{jn}^{
ho_l^n} + (1- heta_{jn}) L_{jn}^{
ho_l^n}
ight)^{rac{1}{
ho_e^n}}$$

- C, L: college, non-college labor
- heta : educated labor intensity

$$ho_l = rac{\sigma_l - 1}{\sigma_l}:$$
 EoS for labor

Road map: progress

Intro: 🔽

Model:

- Overview: 🗸
- Labor Supply: 🔽
- Labor (and Energy) demand: 🔽
- Fuel Supply and Rents

Data + Estimation

Carbon Taxes
Electricity and Emissions

Electricity is supplied in one of 9 NERC regions, \mathcal{R} . LR supply curve is:

$$P_j^{
m elec} = a_{kj} Q^\mu_{{\cal R}(j)}$$

where

- a_{kj} is an intercept that varies across $k \in \{\text{residential}, \text{industrial}\}$ and cities within a region, reflecting different costs of delivery
- $Q_{\mathcal{R}(j)}$ is the quantity of electricity supplied in NERC region $\mathcal R$

Electricity and Emissions

Electricity is supplied in one of 9 NERC regions, \mathcal{R} . LR supply curve is:

$$P_j^{
m elec} = a_{kj} Q^\mu_{{\cal R}(j)}$$

where

- a_{kj} is an intercept that varies across $k \in \{\text{residential}, \text{industrial}\}$ and cities within a region, reflecting different costs of delivery
- $Q_{\mathcal{R}(j)}$ is the quantity of electricity supplied in NERC region $\mathcal R$
- Emissions factor for fuel-type m in city j

$$\delta^m_j = egin{cases} \delta^{elec}_{\mathcal{R}(j)} & ext{if} \ m \in \{ ext{elec}\} \ \delta_m & ext{if} \ m \in \{ ext{gas,oil}\} \end{cases}$$

[NERC Regions]

Rents

I posit a long-run upward sloping rental supply curve:

$$R_j=eta_j H_j^{\kappa_j}$$

Differences in:

- β_j : reflect differences in construction/materials costs across cities
- κ_j : reflect differences in amount of land for dev. and land-use regs

Road map: progress

Intro: 🔽

Model:

- Overview: 🗸
- Labor Supply: 🔽
- Labor (and Energy) demand: 🔽
- Fuel Supply and Rents:

Data + Estimation

Carbon Taxes

Data + Estimation

Data

Data comes from multiple sources:

- 1) Census and ACS: HH level data with:
 - Current location, birth-location, education, rent, wages, and energy expenditure

Data

Data comes from multiple sources:

- 1) Census and ACS: HH level data with:
 - Current location, birth-location, education, rent, wages, and energy expenditure
- 2) Energy Information Association (EIA): Energy prices
 - Use prices + expenditures to back out HH energy consumption

Data

Data comes from multiple sources:

- 1) Census and ACS: HH level data with:
 - Current location, birth-location, education, rent, wages, and energy expenditure
- 2) Energy Information Association (EIA): Energy prices
 - Use prices + expenditures to back out HH energy consumption
- **3)** EIA: Emissions data + Aggregate Firm Energy Consumption
 - Impute city-sector firm energy consumption as proportional to each city-sectors' employment share
 - Implies constant energy/labor ratios across cities (but not sectors)

Estimation

The model has a *ton* of parameters and "market-level" indices.

- Wage and rent indices: [Details]
- Household Energy Consumption: [Details]
- Firm Production Parameters: [Details]
- Energy Supply Curve Parameters: [Details]
- Rental Supply Curve Parameters: [Details]

Labor Supply: Most important component, gets a whole slide 😁

Labor Supply

I use a two-step estimation procedure

1) Recover moving cost parameters using "micro-BLP" (BLP, 2004). [Details]

- Treat locations-sectors as "products" with characteristics by educ. group
- Use repeated cross-sections of census. Estimate parameters and corresponding mean utilities for 4 sample years

Labor Supply

I use a **two-step** estimation procedure

1) Recover moving cost parameters using "micro-BLP" (BLP, 2004). [Details]

- Treat locations-sectors as "products" with characteristics by educ. group
- Use repeated cross-sections of census. Estimate parameters and corresponding mean utilities for 4 sample years
- **2)** Estimate β_e^w and β_e^r in first-differences with IV. [Details]
 - Bartik labor demand shocks identifies eta^e_w
 - Bartik labor demand shocks imes city housing supply elasticity identifies eta_r^e
 - [Parameter Estimates]
 - [Model Fit]

Road map: progress

Intro: 🔽

Model: 🔽

- Overview: 🗸
- Labor Supply: 🔽
- Labor (and Energy) demand:
- Fuel Supply and Rents:

Data + Estimation 🗸

- Overview and Data:
- Labor supply estimates:

Carbon Taxes

Carbon Taxes

Carbon taxes

A carbon tax (of τ) impacts the price of energy. New energy supply curves are:

$$egin{aligned} & ilde{P}_j^m = P_j^m + au imes \delta^m \;\; ext{for}\;\; m \in \{ ext{gas,oil}\} \ & ilde{P}_j^{ ext{elec}} = a_{kj} Q_{\mathcal{R}(j)}^\mu + (au imes \delta_{\mathcal{R}(j)}^{ ext{elec}}) \end{aligned}$$

Carbon taxes

A carbon tax (of τ) impacts the price of energy. New energy supply curves are:

$$egin{aligned} & ilde{P}_j^m = P_j^m + au imes \delta^m \;\; ext{for} \;\; m \in \{ ext{gas,oil}\} \ & ilde{P}_j^{ ext{elec}} = a_{kj} Q_{\mathcal{R}(j)}^\mu + (au imes \delta_{\mathcal{R}(j)}^{ ext{elec}}) \end{aligned}$$

Use the estimated model to solve for counterfactual equilibrium¹ with a \$31 per ton (SCC à la Nordhaus, 2017)

¹ An **equilibrium** in this model is a set of prices and quantities that clear all relevant markets. [Details]

Carbon taxes

A carbon tax (of τ) impacts the price of energy. New energy supply curves are:

$$egin{aligned} & ilde{P}_j^m = P_j^m + au imes \delta^m \;\; ext{for} \;\; m \in \{ ext{gas,oil}\} \ & ilde{P}_j^{ ext{elec}} = a_{kj} Q_{\mathcal{R}(j)}^\mu + (au imes \delta_{\mathcal{R}(j)}^{ ext{elec}}) \end{aligned}$$

Use the estimated model to solve for counterfactual equilibrium¹ with a \$31 per ton (SCC à la Nordhaus, 2017)

Compensating Variation: Dollar amount HH would need (yearly) to be indifferent between tax and no tax:

$$CV_i = \underbrace{(\mathbb{E}[V(au > 0)] - \mathbb{E}[V(au = 0)])}_{\%\Delta ext{Expected Utility}} imes \underbrace{rac{w_i}{eta^w}}_{ ext{Wage conversion}}$$

¹ An **equilibrium** in this model is a set of prices and quantities that clear all relevant markets. [Details]

$\tau = $31/ton:$	% Δ Emissions: -19.8			
No Transfers	Mean CV (\$)	Mean/st.dev CV	%∆ Man. Emp	% Δ Ser. Emp
Total	-1,221	-3.14	-11.1	2.01
College	-926	-3.55	-12.7	1.78
Non-College	-1,417	-4.16	-10.4	2.34

Compensating variation across cities by **industry**

College Non-College 15151010550 Ω 15151010 Count 5 5 0 Ω 1515101055 0 Ω 151510 10550 0 -\$1,000 CV -\$1,500 CV -\$1,500 -\$500 -\$2,500 -\$2,000 -\$1,000 -\$2,000 Midwest Northeast South West

Compensating variation across city-industries by **Census Region**

Migration Results

Percent Change in Population

By education

Road map: progress

Intro: 🔽

Model:

- Overview: 🗸
- Labor Supply: 🔽
- Labor (and Energy) demand: 🗸
- Fuel Supply and Rents:

Data + Estimation

- Overview and Data: 🔽
- Labor supply estimates:

Carbon Taxes

- Compensating Variation:
- Welfare Metrics
- Transfers

Welfare Metrics

Next: map out non-monetized tax incidence ("incidence")

• Due to variation in wages, incidence may be different than CV ("monetized" incidence)

Welfare Metrics

Next: map out non-monetized tax incidence ("incidence")

• Due to variation in wages, incidence may be different than CV ("monetized" incidence)

Example: Avg. compensating variation for a non-college household in:

- San Francisco: \$1,876
- Detroit: \$1,619

Welfare Metrics

Next: map out non-monetized tax incidence ("incidence")

• Due to variation in wages, incidence may be different than CV ("monetized" incidence)

Example: Avg. compensating variation for a non-college household in:

- San Francisco: \$1,876
- Detroit: \$1,619

Might naively conclude that worker in SF has higher tax burden than Detroit

- Wages mask important underlying heterogeneity in incidence!
- Look at incidence in percent terms rather than levels

College Tax Incidence							
-1.30%	-1.20%	-1.10%					

Non-College Tax Incidence

I	I			
1	1		1.1	
-4.00%	-3.80%	-3.60%	-3.40%	

Change in Utility across city-industries by Census Region

[Correlation with Voting Patterns]

Road map: progress

Intro: 🔽

Model:

- Overview: 🗸
- Labor Supply: 🔽
- Labor (and Energy) demand: 🗸
- Fuel Supply and Rents:

Data + Estimation: 🔽

- Overview and Data: 🔽
- Labor supply estimates:

Carbon Taxes

- Compensating Variation:
- Welfare Metrics: 🔽
- Transfers

Equity and Emissions

Lastly, I use the model to simulate a carbon tax with transfers.

- My model (and others): carbon taxes are regressive!
- Many bills call for progressive redistribution (e.g. SWAP Act)

Equity and Emissions

Lastly, I use the model to simulate a carbon tax with transfers.

- My model (and others): carbon taxes are regressive!
- Many bills call for progressive redistribution (e.g. SWAP Act)

Adding Transfers:

• Transfers are parameterized as: $\mathcal{T}(w) = \lambda w^{1-\gamma}$ (HSV, 2017)

 $\circ~\lambda>0:$ level of reimbursement. Determined endogenously. [Details] $\circ~\gamma\geq1:$ progressivity of the transfers

Equity and Emissions

Lastly, I use the model to simulate a carbon tax with transfers.

- My model (and others): carbon taxes are regressive!
- Many bills call for progressive redistribution (e.g. SWAP Act)

Adding Transfers:

• Transfers are parameterized as: $\mathcal{T}(w) = \lambda w^{1-\gamma}$ (HSV, 2017)

 $\begin{tabular}{ll} & $\lambda>0$: level of reimbursement. Determined endogenously. [Details] \\ & $\gamma\geq1$: progressivity of the transfers \end{tabular}$

Counterfactuals: Use model to examine how aggregate emissions depend on transfers [Mechanism]

I find that a 1% increase in the progressivity of transfers leads to a -0.001% decrease in aggregate emissions

- **Note:** This is *relative* to an equilibrium with lump-sum transfers
- Largely driven by sectoral-re-allocation [Details]

I find that a 1% increase in the progressivity of transfers leads to a -0.001% decrease in aggregate emissions

- **Note:** This is *relative* to an equilibrium with lump-sum transfers
- Largely driven by sectoral-re-allocation [Details]

Estimate for reduction is **small** relative to model uncertainty that generates estimate

• Reduction is a function of the entire model (all functional form assumptions, parameter estimates, etc)

I find that a 1% increase in the progressivity of transfers leads to a -0.001% decrease in aggregate emissions

- **Note:** This is *relative* to an equilibrium with lump-sum transfers
- Largely driven by sectoral-re-allocation [Details]

Estimate for reduction is **small** relative to model uncertainty that generates estimate

• Reduction is a function of the entire model (all functional form assumptions, parameter estimates, etc)

Takeaways?

- Progressive transfers *may* reduce emissions relative to flat transfers
- More conservatively: progressive transfers don't cause agg. emissions to increase

Road map: progress

Intro: 🔽

Model:

- Overview: 🗸
- Labor Supply: 🔽
- Labor (and Energy) demand: 🗸
- Fuel Supply and Rents:

Data + Estimation: 🔽

- Overview and Data: 🔽
- Labor supply estimates:

Carbon Taxes

- Compensating Variation:
- Welfare Metrics: 🔽
- Transfers:

Conclusions
Conclusions

Main Takeaways:

1) Carbon taxes: heterogeneous impacts across cities, sectors, education groups

- Non-college workers in manufacturing bear greatest burden
- Carbon taxes lead to pop increases in West Coast and New England.

Conclusions

Main Takeaways:

1) Carbon taxes: heterogeneous impacts across cities, sectors, education groups

- Non-college workers in manufacturing bear greatest burden
- Carbon taxes lead to pop increases in West Coast and New England.

2) Unique political challenges to carbon pricing

- Need larger transfers to lower incidence areas
- Driven by differences in wages across cities

Conclusions

Main Takeaways:

1) Carbon taxes: heterogeneous impacts across cities, sectors, education groups

- Non-college workers in manufacturing bear greatest burden
- Carbon taxes lead to pop increases in West Coast and New England.

2) Unique political challenges to carbon pricing

- Need larger transfers to lower incidence areas
- Driven by differences in wages across cities

3) Progressivity of transfers and aggregate emissions go hand-in-hand

- Point estimate is small, however
- Progressive transfers do not undo emissions reductions

Thank You!!

John Morehouse

jmorehou@uoregon.edu

johnmmorehouse.com

Current papers:

- The Environmental Cost of Land-Use Restrictions
 - **Forthcoming:** Quantitative Economics (*with Mark Colas*)
- In Search of Peace and Quiet: The Heterogeneous Effects of Short-Term Rentals on Housing Prices
 - **R&R:** Regional Science and Urban Economics (*with Brett Garcia and Keaton Miller*)
- Downwind and Out: The Strategic Dispersion of Power Plants and their Pollution
 - Under Review (with Ed Rubin)

Current papers:

- The Environmental Cost of Land-Use Restrictions
 - **Forthcoming:** Quantitative Economics (*with Mark Colas*)
- In Search of Peace and Quiet: The Heterogeneous Effects of Short-Term Rentals on Housing Prices
 - **R&R:** Regional Science and Urban Economics (*with Brett Garcia and Keaton Miller*)
- Downwind and Out: The Strategic Dispersion of Power Plants and their Pollution
 - Under Review (with Ed Rubin)

Works in progress include:

- Studying the effects of coal stack-heights on health and attribution
- Heterogeneity in response to climate change across demographic groups
- Labor market power and the college wage premium

Land-Use Regulations

The Environmental Cost of Land-Use Restrictions (with Mark Colas)

Research Question: How do stringent land-use regs impact national carbon emissions?

Methods:

- Strucutral estimation of HH sorting model
- Semi-parametric estimation of causal effect of location on HH energy consumption
- Integrate InMAP polltion transport model with sorting model

Main Finding: Relaxing CA land-use regs to level faced by median urban HH reduces carbon emissions by 0.6%

Power Plants: Strategic Siting

Downwind and Out: The Strategic Dispersion of Power Plants and their Pollution (with Ed Rubin)

Research Questions: Have power plants been strategically sited to export their emissions? How far do their emissions travel and where?

Methods:

- Descriptive statistics on geography of US power plants
- Non-parametric test of strategic siting for coal plants. Strategic Identified off of upwind/downwind areas
- HYSPLIT model for estimating dispersion of coal-based particulates

Main Findings:

- Coal plants have been sited strategically to reduce downwind emissions
- Emissions travel far and fast. 90% of coal-based pm leaves **state** of origin within 48 hours

Short-Term Rentals

In Search of Peace and Quiet: The Heterogeneous Effects of Short-Term Rentals on Housing Prices (with Brett Garcia and Keaton Miller)

Research Question: Can short-term rentals (STRs) reduce housing prices? If so, how?

Methods:

- Theoretical model of housing demand with externalities
- Instrumental variables + difference-in-differences
- Difference-in-Discontinuities

Main Findings:

- Relationship between housing prices and STRs is an ambiguous function of the relationship between STRs and amenities
- Empirical estimates suggest in some cities the effect is negative, contrary to the literature

Energy Expenditures

Expenditure Share on:	College	Non-College	
Electricity			
Mean (SD)	0.025 (0.013)	0.046 (0.018)	
Range	[0.005, 0.084]	[0.014, 0.133]	
Natural Gas			
Mean (SD)	0.03 (0.03)	0.04 (0.05)	
Range	[0.00, 0.39]	[0.00, 0.36]	
Fuel-Oil			
Mean (SD)	0.001 (0.003)	0.003 (0.005)	
Range	[0.000, 0.021]	[0.000, 0.025]	

Model: Firms

Energy Demand

$$egin{aligned} P^E_{jn} &= \mathcal{A}_{jn} \mathcal{I}^{1-
ho^n_{el}}_{jn} \mathcal{E}^{(
ho^n_{el}-
ho^n_{el})}_{jn} lpha_{jn} \zeta_n E^{
ho^n_{e}-1}_{jn} \ P^G_{jn} &= \mathcal{A}_{jn} \mathcal{I}^{1-
ho^n_{el}}_{jn} \mathcal{E}^{(
ho^n_{el}-
ho^n_{el})}_{jn} lpha_{jn} (1-\zeta_n) G^{
ho^n_{e}-1}_{jn} \end{aligned}$$

Labor Demand

$$egin{aligned} W^{C}_{jn} &= \mathcal{A}_{jn} \mathcal{I}^{1-
ho^{n}_{el}}_{jn} \mathcal{L}^{(
ho^{n}_{el}-
ho_{l})}_{jn} (1-lpha_{jn}) (heta_{jn}) C^{
ho_{l}-1}_{jn} \ W^{L}_{jn} &= \mathcal{A}_{jn} \mathcal{I}^{1-
ho^{n}_{el}}_{jn} \mathcal{L}^{(
ho^{n}_{el}-
ho_{l})}_{jn} (1-lpha_{jn}) (1- heta_{jn}) L^{
ho_{l}-1}_{jn} \end{aligned}$$

Model: Firms

Energy Demand

$$egin{aligned} P^E_{jn} &= \mathcal{A}_{jn} \mathcal{I}^{1-
ho^n_{el}}_{jn} \mathcal{E}^{(
ho^n_{el}-
ho^n_e)}_{jn} lpha_{jn} \zeta_n E^{
ho^n_e-1}_{jn} \ P^G_{jn} &= \mathcal{A}_{jn} \mathcal{I}^{1-
ho^n_{el}}_{jn} \mathcal{E}^{(
ho^n_{el}-
ho^n_e)}_{jn} lpha_{jn} (1-\zeta_n) G^{
ho^n_e-1}_{jn} \end{aligned}$$

Labor Demand

$$egin{aligned} W^{C}_{jn} &= \mathcal{A}_{jn} \mathcal{I}^{1-
ho^{n}_{el}}_{jn} \mathcal{L}^{(
ho^{n}_{el}-
ho_{l})}_{jn} (1-lpha_{jn}) (heta_{jn}) C^{
ho_{l}-1}_{jn} \ W^{L}_{jn} &= \mathcal{A}_{jn} \mathcal{I}^{1-
ho^{n}_{el}}_{jn} \mathcal{L}^{(
ho^{n}_{el}-
ho_{l})}_{jn} (1-lpha_{jn}) (1- heta_{jn}) L^{
ho_{l}-1}_{jn} \end{aligned}$$

where

$$\mathcal{A}_{jn} = P_n A_{jn} igg(rac{A_{jn}\eta}{ar{r}}igg)^{rac{\eta}{1-\eta}} (1-\eta).$$

NERC Map

Carbon Emissions from Electricity Across NERC Regions

Return

Wage and Rent Series

Estimating equation for wages given by:

$$\log(W_{ejn}) =
u_{ejn} + eta_1^e \log(ext{white}_i) + eta_2^e \log(ext{over35}_i) + arepsilon_{ijn}$$

where ν_{ejn} is a fixed effect that estimates the city-sector-education group wage.

Estimating equation for rents:

$$\log(R_i) = eta_{CBSA(i)} + eta_1 \mathrm{Units}_i + eta_2 \mathrm{Bedrooms}_i + eta_3 \left(rac{\mathrm{members}_i}{\mathrm{rooms}_i}
ight) + arepsilon_i$$

City-level rents are given estimated off of the cbsa fixed effect, holding the covariates constant across all cities at their median level

Household Energy

Follow Glaeser & Kahn (2010) and estimate:

$$x_i^m = \gamma_{ ext{CBSA(i)}} + eta_1 \log(ext{Income}_i) + eta_2 ext{HHsize}_i + eta_2 ext{Agehead}_i + arepsilon_i$$

where:

- x_i^m is household i's consumption of fuel type $m \in \{ ext{gas, elec, oil}\}$,
- $\gamma_{\mathrm{CBSA(i)}}$ is a fixed effect for the household's CBSA

Take estimates of HH energy and adjust by city composition of single unit/multi-unit and owned/rented homes.

Return

Production Parameters

Calibrate elasticities of substitution (multiple sources)

Factor intensities are solved for in two steps:

1) Recover labor and energy intensities using relative labor and energy demand curves:

Production Parameters

2) Use ratio of energy prices to wages and estimates from step 1 to recover input intensities:

Energy Parameters

First, I calibrate inverse supply elasticity, μ (Dahl & Duggan, 1996).

Residential Energy Supply Curve.

Cobb-Douglas demand function for energy:

$$x_{ejn}^{m\star} = rac{lpha_{ejn}^m w_{ejn}}{oldsymbol{lpha}_{ejn} P_j^m} \quad orall m \in \{ ext{elec, gas, oil}\}$$

Aggregating to the city-level and plugging into the supply curve yields:

$$\log(P_{kj}^{elec}) = rac{\mu}{1+\mu} \mathrm{log} \left(\sum_{e} \sum_{n} N_{ejn} rac{\left(lpha_{ejn}^{\mathrm{elec}} imes w_{ejn}
ight)
ight)}{oldsymbol{lpha}_{ejn}}
ight) + a_{kj}$$

Energy Parameters

Industry Energy Supply Curve

In this case, I simply set

$$a_{kj} = \log(P_{kj}^{ ext{elec}}) - \mu imes \log(E_j)$$

where $E_j = \sum_n E_{jn}$ is firm energy consumption in city j (aggregated over sectors). Return

Rent Parameters

Calibrate inverse supply elasticities (Saiz (2010)). Cobb-Douglas demand for housing:

$$H_{ejn}^{\star} = rac{lpha_{e}^{H} w_{ejn}}{oldsymbol{lpha}_{ejn} R_{j}}$$

Aggregating to the city level and plugging this into the supply curve yields:

$$\log(R_j) = rac{eta_j}{1+eta_j} {
m log} igg(\sum_e \sum_n N_{ejn} rac{ig(lpha_e^H imes w_{ejn}) ig)}{oldsymbol lpha_{ejn}} igg) + \eta_j$$

With EV1 assumption on error term, choice probabilities are:

$$Pr_{i}(oldsymbol{\Theta}^{\gamma_{et}}) = rac{\expigl(\delta_{ejnt} + artheta_{et}^{div}\mathbb{I}igl(j \in \mathcal{B}_{i}^{div}igr) + artheta_{et}^{ ext{dist}}\phiigl(j, \mathcal{B}_{i}^{st}igr) + artheta_{et}^{ ext{dist2}}\phi^{2}igl(j, \mathcal{B}_{i}^{st}igr)igr)}{\sum\limits_{j' \in J}\sum\limits_{n' \in N}\expigl(\delta_{ej'n't} + artheta_{et}^{div}\mathbb{I}igl(j' \in \mathcal{B}_{i}^{div}igr) + artheta_{et}^{ ext{dist}}\phiigl(j', \mathcal{B}_{i}^{st}igr) + artheta_{et}^{ ext{dist2}}\phi^{2}igl(j', \mathcal{B}_{i}^{st}igr)igr)}$$

where

•
$$\delta_{ejnt}=eta_e^w\log(W_{ejnt})+eta_e^r\log(R_{jt})+\sum_meta_{ej}^m\log P_{jt}^m+\xi_{ejnt}$$
 is the mean utility

With EV1 assumption on error term, choice probabilities are:

$$Pr_{i}(\mathbf{\Theta}^{\gamma_{et}}) = rac{\exp\left(\delta_{ejnt} + \Theta_{et}^{div}\mathbb{I}\left(j \in \mathcal{B}_{i}^{div}
ight) + \Theta_{et}^{ ext{dist}}\phi\left(j, \mathcal{B}_{i}^{st}
ight) + \Theta_{et}^{ ext{dist2}}\phi^{2}\left(j, \mathcal{B}_{i}^{st}
ight)
ight)}{\sum\limits_{j' \in J}\sum\limits_{n' \in N}\exp\left(\delta_{ej'n't} + \Theta_{et}^{div}\mathbb{I}\left(j' \in \mathcal{B}_{i}^{div}
ight) + \Theta_{et}^{ ext{dist}}\phi\left(j', \mathcal{B}_{i}^{st}
ight) + \Theta_{et}^{ ext{dist2}}\phi^{2}\left(j', \mathcal{B}_{i}^{st}
ight)
ight)}$$

where

•
$$\delta_{ejnt} = \beta_e^w \log(W_{ejnt}) + \beta_e^r \log(R_{jt}) + \sum_m \beta_{ej}^m \log P_{jt}^m + \xi_{ejnt}$$
 is the mean utility

Given this, the LL function is:

$$\mathbf{L}_{et}(\mathbf{\Theta}^{\gamma_{et}}) = \sum_{i=1}^{N^d} \sum_{n \in N} \sum_{j \in J} \mathbb{I}_i(j,n) \log(Pr_i(\mathbf{\Theta}^{\gamma_{et}}))$$

Estimation: MLE

Outer loop:

- Guess parameter vector, $ec{ heta_e}$

Inner Loop:

- Guess arbitrary vector of mean utilities $ec{\delta}_0$
- Use Nevo (2000) contraction to recover "true" mean utilities given $\vec{\theta_e}$:

$$\exp(ec{\delta_1}) = \exp(ec{\delta_0}) imes \left(rac{S_{ ext{data}}}{S_0(ec{\delta_0},ec{ heta_e})}
ight)$$

- Check the value of the likelihood function. If not maximized, go back to step one.
 - Estimates robust to different maximization algorithms

With $\Theta^{\gamma_{et}}$, can recover the "true" mean utilities. Estimating eqn is:

$$\Delta \delta_{ejn} = eta_e^w \Delta \log(W^{EA}_{ejn}) + eta_e^r \Delta \log(R_j) + \Delta \epsilon_{ejn}$$

With $\Theta^{\gamma_{et}}$, can recover the "true" mean utilities. Estimating eqn is:

$$\Delta \delta_{ejn} = eta_e^w \Delta \log(W^{EA}_{ejn}) + eta_e^r \Delta \log(R_j) + \Delta \epsilon_{ejn}$$

Need instruments:

- Consider a school built in j (unobservable amenity increase) $\implies \delta_{ejn} \uparrow \implies$ workers in, wages down and rents up (mechanically)
- Wages: Bartik-Style instrument: $\Delta Z_{ejnt} = \sum_{\iota \in n} \omega_{ej\iota}^{1990} imes \left(\Delta \mathrm{Hours}_{e,-j,\iota} \right)$
 - $\omega_{ej\iota}^{1990}$: share of total hrs by and ι in city j by education group e in 1990 as a fraction of the total hours worked in city j by education group e in 1990
 - $\circ ~\Delta \mathrm{Hours}_{e,-j,\iota}$ is the change in national hours worked in all cities except city j

With $\Theta^{\gamma_{et}}$, can recover the "true" mean utilities. Estimating eqn is:

$$\Delta \delta_{ejn} = eta_e^w \Delta \log(W^{EA}_{ejn}) + eta_e^r \Delta \log(R_j) + \Delta \epsilon_{ejn}$$

Need instruments:

- Consider a school built in j (unobservable amenity increase) $\implies \delta_{ejn} \uparrow \implies$ workers in, wages down and rents up (mechanically)
- Wages: Bartik-Style instrument: $\Delta Z_{ejnt} = \sum_{\iota \in n} \omega_{ej\iota}^{1990} imes \left(\Delta \mathrm{Hours}_{e,-j,\iota}
 ight)$
 - $\omega_{ej\iota}^{1990}$: share of total hrs by and ι in city j by education group e in 1990 as a fraction of the total hours worked in city j by education group e in 1990
 - $\circ ~\Delta \mathrm{Hours}_{e,-j,\iota}$ is the change in national hours worked in all cities except city j
- Rents: $\Delta Z_{ejnt} imes \kappa_j$ where κ_j is the housing supply elasticity of city j
 - $\circ~$ Two cities with identical labor demand shocks but different supply elasticities \implies different change in rental prices

Energy Adjusted Income

Mean utility estimating equation:

Note that $\tilde{\alpha}_{ejnt}^m = \frac{\alpha_{ejnt}^m}{\alpha_{ejnt}}$ implies that $\sum_{m'} \tilde{\alpha}_{ejt}^{m'} = \frac{\sum_{m'} \tilde{\alpha}_{ejt}^{m'}(1+\alpha_e^h)}{1-\sum_{m'} \tilde{\alpha}_{ejt}^{m'}}$ and thus $\alpha_{ejt}^m = \frac{\tilde{\alpha}_{ejt}^m(1+\alpha_e^h)}{1-\sum_{m'} \tilde{\alpha}_{ejt}^{m'}}$. I can plug these into

the mean utility equation to get:

$$\delta_{ejnt} = \left(rac{1+lpha_e^h+rac{ ildelpha_{ejt}^m(1+lpha_e^h)}{1-\sum_{m'} lpha_{ejt}^{m'}}}{\sigma_e}
ight) \log(w_{ejnt}) - rac{lpha_e^h}{\sigma_e} \log(R_{jt}) - rac{(1+lpha_e^h)}{1-1-\sum_{m'} lpha_{ejt}^{m'}} \sum_m rac{ ildelpha_{ej}^m}{\sigma_e} \log P_{jt}^m + \xi_{ejnt}.$$

Rearranging yields: $\delta_{ejnt} = eta_e^w \log(W_{ejnt}^{EA}) + eta_e^r \log(R_j) + \epsilon_{ejn}.$

where:
$$W^{EA}_{ejnt} = rac{\log(W_{ejnt}) - \sum_m \left(ilde{lpha}^m_{ejnt} \log(P_{jt})
ight)}{1 - \sum_m ilde{lpha}^m_{ejnt}}$$

•
$$eta_e^w = rac{1+lpha_e^h}{\sigma_e}$$

•
$$\beta_e^r = \frac{\alpha_e^h}{\sigma_e}$$
.

Labor Supply

	No College			College			
	Θ_{ut}^{div}	Θ_{ut}^{dist}	Θ_{ut}^{dist2}	Θ_{st}^{div}	Θ_{st}^{dist}	Θ_{st}^{dist2}	
2017	1.698 (0.004)	-3.218 (0.005)	0.696 (0.004)	1.489 (0.012)	-2.609 (0.006)	0.644 (0.003)	
Income and Rents	No College				College		
Θ^w_e	3.558***				7.0362***		
	(0.591)				(0.815)		
Θ_e^r	-2.160***			-3.731***			
	(0.372)			(0.348)			
Cragg-Donald F-Stat: 14.63					-		

Table 2: Standard errors are in parentheses. Maximum likelihood standard errors are estimated numerically. Stars indicate statistical significance: *p<0.05; **p<0.01; ***p<0.001.

Model Fit

Log Data Counts

Model Fit

[Return]

Equilibrium Sketch

An equilibrium requires utility maximization, profit maximization, and all-markets need to clear.

Solving the equilibrium:

1) Guess a vector of choice-shares for each education group. Also guess vectors of firm energy demands

• Use guess to calculate implied population levels

2) Use the pop. levels from step 1 to calculate city level prices (wages, rents, energy)

3) Calc utility-maximizing shares using the logit probabilities from the agents problem and the output from step 2

3) Check if firm's WTP for energy given guess in step 1 and energy demand curve consistent with supply

4) If no to either of step 3, update guess of shares/energy and return to step 1

Migration Results

Percent Change in College Population

-0.80%	-0.40%	0.00%	0.40%	

Migration Results

Percent Change in Non College Population

Voting Results

Voting Results

[Return]
Endogenous Transfers

The transfer function is: $\mathcal{T}(w) = \lambda w^{1-\gamma}$

- Paramter γ is exogenous. Parameter λ is determined by gov't budget clearing
- Sum of revenue: $\mathbb{T} = au \sum_n \sum_j \sum_m \delta^m_j \hat{f}^m_{\ jn}$

 $\circ\;$ where ${\hat f}_{jn}$ is total energy use in jn of fuel type m

- Sum of payments: $\mathbb{G} = \sum_i \lambda^\star w_{ij}^{1-\gamma}$

Balanced budget implies:

$$egin{aligned} \lambda^\star \sum_e \sum_j N^\star_{ejn} w^{1-\gamma}_{ejn} &= au \sum_n \sum_j \sum_m \delta^m_j \hat{f}^m_{\ jn} \ \lambda^\star &= rac{ au \sum_n \sum_j \sum_m \delta^m_j \hat{f}^m_{\ jn}}{\sum_e \sum_j N^\star_{ejn} w^{1-\gamma}_{ejn}} \end{aligned}$$

[Return]

Relationship between equity-of-transfers and aggregate emis depends on:

- 1) City-sector level relationship between wages and emissions
- 2) Substitution patterns across lower wage (and thus higher transfer) cities

Relationship between equity-of-transfers and aggregate emis depends on:

1) City-sector level relationship between wages and emissions

2) Substitution patterns across lower wage (and thus higher transfer) cities

Relationship between equity-of-transfers and aggregate emis depends on:

1) City-sector level relationship between wages and emissions

2) Substitution patterns across lower wage (and thus higher transfer) cities

I use the model to simulate the general equilibrium elasticity of aggregate emissions with respect to the relative progressivity of transfers:

$$\epsilon_{ extsf{Emissions},\gamma} = rac{\partial extsf{Emissions}}{\partial \gamma} rac{\gamma}{ extsf{Emissions}}.$$

[Return]

Coal

I use the model to simulate tax incidence without coal-fired electricity.

Motivation:

Results

Results

No-coal change in Tax Incidence across Census Regions

[Return]

Transfers: Sectoral Changes

$\gamma = 1$	%∆ Man. Emp	%Δ Ser. Emp	% Δ Con. Emp	%Δ Ag. Emp
Total	-11.8	2.42	1.57	-2.78
College	-13.7	1.99	0.07	-3.51
Non-College	-10.9	2.80	1.7	-2.62
$\gamma = 1.2$				
Total	-11.9	2.49	1.36	-1.86
College	-13.8	2.03	0.05	-2.78
Non-College	-11.1	2.91	1.5	-1.65

Return