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Abstract

Residential, industrial, and commercial carbon dioxide emissions vary substantially
across cities and sectors; this variation has led to concerns about the distributional con-
sequences of carbon pricing policies. I develop and estimate a spatial equilibrium model
to quantify the incidence from a stylized carbon tax across cities, sectors, and education
groups in the U.S. The model features heterogeneous households, firms in multiple loca-
tions, sectors that use energy and labor as imperfect substitutes, and region-specific carbon
emissions rates due to differences in the fuel mix used to generate electricity. A uniform
carbon tax has substantial distributional effects, with non-college-educated manufacturing
workers living in the Midwest and South bearing the greatest burden. Cities with mild
climates, carbon-efficient power plants, and services-oriented economies experience mod-
est population increases as households move in response to the carbon tax. The share of
the total tax burden attributable to coal-fired electricity varies significantly across regions.
Additionally, I use the model to demonstrate that progressive compensation leads to a de-
cline in aggregate carbon emissions due to a reallocation of workers into cities and less
carbon-intensive sectors.
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1 Introduction

Carbon emissions create well-recognized negative externalities. The Intergovernmental Panel

on Climate Change (IPCC) inventories rising sea levels, temperatures, and changes in the

pattern, frequency, and intensity of extreme weather events (storms, heat waves, and droughts)

as a few of the likely consequences of climate change. Among professional economists, carbon

taxes receive widespread support as a tool for reducing emissions due to the economic efficiency

offered by the tax (Climate Leadership Council, 2021). Despite this support from economists,

global policy efforts to implement carbon prices have been fairly limited.1 Sallee (2019) argues

that the distributional concerns arising from carbon pricing—and more specifically, the ability to

precisely predict lump-sum transfers for those who bear the greatest burden of the tax—account

for disparities between the policy preferences of economists and voters.

Several factors lead to heterogeneity across households in the burden of carbon taxes.

Carbon is a byproduct of energy production, so differences in the carbon intensities of power

plants across regions will lead to spatial differences in the effect of a carbon tax on electric-

ity prices. These increases in electricity prices (and other fuel prices)—and their differences

across space—create heterogeneous initial impacts on households through two distinct chan-

nels: labor demand and household energy expenditures. On the labor-demand side, a carbon

tax will reduce output from emissions-intensive industries and lead to a reallocation of input

demand away from energy use towards other inputs. Furthermore, industries tend to cluster in

particular cities; this clustering implies that a carbon tax will have differential impacts on labor

demand (and hence wages) across both cities and sectors. On the energy expenditure side,

household demand for energy (derived from demand for heating and cooling) varies across

space, primarily due to differences in climate.2 Thus, a nationally uniform carbon price creates

heterogeneous impacts on households stemming from differences across cities in the resulting

energy price increases and the disutility delivered by these price increases. The labor demand

channel and the household energy expenditure channels imply that the burden from a carbon

tax is a function of the joint spatial distributions of sectors (and their respective production

technologies), households, and the mix of fuels used regionally to generate electricity. This

paper contributes to the carbon-pricing policy debate by estimating the spatial and sectoral

distribution of incidence across education groups from a carbon tax in the United States.

To measure the burden from a carbon tax, I develop and estimate a quantitative spatial

equilibrium model. At the core of the model is a discrete choice problem for households who

must select both a sector and a location. Wages are endogenous, and production is a city- and

sector-specific function of imperfectly substitutable labor and energy inputs. Locations vary in

1 As of 2020, some 40 countries had enacted some form of carbon pricing (World Bank, 2020).
2 Lyubich (2021) demonstrates that location explains over half of the variation in household carbon emissions—15-

25% of the overall variation in carbon emissions.
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terms of their amenities, their housing supply curves, the emissions intensity of their electricity

generation and power-plant technologies, and their input-use intensities in producing goods

and services. Output markets are assumed to be perfectly competitive.

Within the model, the welfare effects of a national carbon tax will vary geographically

and sectorally for four reasons. First, locations vary in terms of the marginal benefit of energy

consumption and the carbon content of the fuel mix used by local power plants (Glaeser and

Kahn, 2010). Cities with warmer climates, such as Houston, tend to have a higher marginal

benefit of electricity consumption due to greater demand for air-conditioning, resulting in

higher household energy demand and thus greater carbon emissions. Second, within the U.S.,

the carbon intensity of power plants varies significantly across regions; some areas such as

the Midwest and South are much more dependent on coal-fired electricity than other areas

such as the West.3 Third, sectors vary in the amount of energy used for production processes

and the degree to which labor and energy are technologically substitutable. For example,

the manufacturing sector is significantly more energy-intensive than the services sector, so a

carbon tax will have a considerably larger effect on manufacturing wages and employment

than services. Lastly, in the context of the model, cities vary in their industrial employment

composition. Due to the differences in the fuel mix used by regional power plants, a carbon

tax will differentially impact energy prices across cities, which in turn will have heterogeneous

impacts on worker’s wages. In response to the energy price and wage changes, workers can

relocate across cities and sectors as the relative attractiveness of each city-sector changes. This

re-sorting of workers across space and sectors results in equilibrium adjustments in rental

markets that further affect utility. Therefore, accurately recovering the overall tax incidence

across different types of households necessitates a general equilibrium analysis that permits

households and firms to respond to the variety of changes that a carbon tax induces.

I discipline the model’s structural parameters using a variety of publicly available data. I

use data from the American Community Survey (ACS) and Census to estimate household pref-

erence parameters and household carbon emissions. More specifically, I estimate the model’s

labor supply parameters using a two-step procedure involving maximum likelihood and in-

strumental variables, similar to the approach taken by Berry, Levinsohn, and Pakes (2004). I

use a combination of calibration and estimation to obtain production functions that are both

city-specific and sector-specific.

To monetize the incidence of a carbon tax, I calculate the average compensating variation,

which is the average dollar amount required for a household in each city-sector to be indifferent

to the carbon tax. I find significant unequal distributional consequences across cities and

sectors from a uniform carbon tax. I find that a carbon tax of $31 per ton would result in a

mean decrease of 926 vs. 1,417 utility-equivalent dollars per year for college vs. non-college

3 Figure 8 in Section A.5 provides a map of US regional emissions rates from electricity.
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households, respectively – with significant heterogeneity across cities and sectors. Furthermore,

I find that this carbon tax would reduce emissions by 19.8% and lead to a reallocation of workers

away from manufacturing (by 11.1%) and into less-carbon intensive jobs in the services sector.

Due to differences in wages across cities, compensating variation (monetized incidence) masks

important underlying heterogeneity in tax burden. Thus, I separately examine compensating

variation in percentage terms rather than dollars— which I refer to simply as “incidence,” (as

opposed to monetized incidence or compensating variation). I find that cities on the West

Coast and New England experience lower incidence than cities elsewhere due to their relatively

carbon-efficient power plants and services-oriented economies.

The model predicts migration patterns across cities consistent with the spatial variation in

tax incidence. Generally, cities in the Western and New England Census Divisions experience

population increases, while cities in the South and Midwest experience population decreases.

For example, California experiences an overall population increase of roughly 2%. Cities in

California have mild climates, source their electricity from carbon-efficient power plants, and

have services-oriented economies. Thus, a carbon tax induces migration to California, as

households benefit from California’s relatively climate-policy resilient economy. Despite being

less mobile, non-college-educated households move in greater rates in response to the carbon

tax—underscoring the more significant tax burden that these households bear.

Motivated by the remarkable decline in the share of electricity generated from coal over

the last 15 years, I use the the model to decompose the carbon tax incidence into two distinct

components: coal and non-coal.4 I re-calculate regional emissions rates from electricity genera-

tion in the absence of coal and re-simulate the $31 carbon tax in the context of this alternative

and cleaner grid.5 I find that the compensating variation falls by nearly 40%, and this decline

exhibits regional heterogeneity. Coal-generated electricity is highly carbon-intensive and thus is

responsible for a larger share of the total incidence in coal-dependent regions. This finding sug-

gests that as the electricity grid decarbonizes, the payment required to compensate households

for a carbon tax will decline by a significant amount.

I use the model to simulate a carbon tax with various compensation schemes. Due to the

regressive nature of carbon taxes, some proposed carbon pricing legislation includes progressive

transfer payments.6 In simulations with carbon taxes and transfers, I focus on varying the

progressivity of the payments to households. The simulations reveal a novel relationship

4 This decline is well documented— for example, see Mendelevitch, Hauenstein, and Holz (2019). I demonstrate
the national and regional decline in the share of coal-generated electricity in figure 3.

5 To be clear, this exercise is purely decompositional. Carbon pricing policies impact the rate of adoption for
carbon-efficient electricity generation since coal is carbon-intensive. For an example, see Scott (2018).

6 For example, the recently introduced Stemming Warming and Augmenting Pay (SWAP) act specifically calls for
“...20% (of revenues) to establish a carbon trust fund for block grants to offset higher energy costs for low-income
households, climate adaptation, energy efficiency, carbon sequestration, and research and development programs”
(U.S. House of Representatives, 2019).
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between the progressivity of transfers and aggregate carbon emissions: aggregate emissions are

lower with progressive transfers than with lump-sum transfers. The mechanism behind this

relationship is straightforward. Wages exhibit spatial and sectoral correlation, so progressive

transfers are also correlated across space and sectors. In an equilibrium with progressive

transfers, lower-wage cities receive larger transfers and thus attract more workers (relative to

a policy with lump-sum transfers), all else equal. The progressivity of the transfers will impact

aggregate carbon emissions if wages are correlated with carbon emissions (at the city-sector

level) due to the reallocation of workers into areas with higher transfers.

Indeed, there is a positive correlation between wages and emissions in the data – and the

model predicts a larger share of workers shifting away from jobs with high wages in emissions-

intensive sectors, thus causing aggregate emissions to fall. My results suggest that using

carbon tax revenue for income redistribution may have the unappreciated unintended benefit

of reducing aggregate emissions—and therefore, has the potential to enhance the effectiveness

of the policy in meeting emissions targets.

Literature. I am not the first to recognize—or model— the distributional impacts of carbon

taxation. For example, Rausch, Metcalf, and Reilly (2011) (RMR) use a calibrated version

of MIT’s US Regional Energy Policy model and a sample of roughly 15,000 households to

demonstrate considerable heterogeneity across demographic groups in the incidence of a car-

bon tax.7, 8 Hafstead and Williams (2018) use a two-sector general equilibrium model and

conclude that the unemployment effects of a carbon tax will be negligible due to growth in

clean industries. Using a macroeconomic lifecycle model, Fried, Novan, and Peterman (2021)

(FNP) find that in the welfare-maximizing allocation of carbon tax revenue, two-thirds goes to

a reduction in capital-income taxes and one third towards increasing the progressivity of the

income tax. My results are complementary to those of FNP. While I abstract from dynamics, my

model’s geographic and sectoral heterogeneity allows me to capture the relationship between

income redistribution and aggregate emissions. In a recent working paper, Castellanos and

Heutel (2019) (CH) conclude that alternative assumptions about worker mobility potentially

play a significant role in the aggregate employment effects from carbon pricing. RMR and CH

make different assumptions about labor mobility; in RMR, workers are mobile across sectors

but not locations. CH examines edge cases with perfect mobility and perfect immobility. My

work explicitly models (and then estimates) the process by which households make city-sector

choices —including moving costs. Even if employment remains constant, my work considers

that relocating to new jobs and locations is costly.

An extensive empirical literature has demonstrated that environmental regulation has het-

7 Other examples of research that looks at the distributional consequences from carbon pricing includes Goulder
et al. (2019), Williams III et al. (2015), and Beck et al. (2015). To my knowledge, I am the first to estimate the
heterogeneous welfare effects from a carbon tax in a locational discrete-choice setting.

8 For details on the Regional Energy Policy model, see Yuan et al. (2019).
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erogeneous impacts across sectors. Recent work by Yamazaki (2017) finds that energy-intensive

sectors saw larger relative losses in wages from the carbon tax in British Columbia, Canada.

In British Columbia, overall unemployment decreased due to a shift in demand towards less

energy-intensive sectors due to the revenue recycling decisions (i.e., transfers that households

received from the tax).9 In complementary work, Yip (2018) finds that the British Columbia

carbon tax was implemented mainly at the expense of individuals without a college degree,

as these workers are generally in more energy-intensive sectors with fewer outside options.10

Other research has demonstrated broader distributional effects from environmental regulation.

For example, Walker (2013) examines the labor-market impacts of the 1990 amendments to

the Clean Air Act (CAA). These amendments involved command-and-control regulations that

established thresholds for the maximum allowable ambient concentrations of pollutants. Using

a triple-difference approach, Walker finds significant reductions in employment in manufactur-

ing (and other energy-intensive sectors) due to these regulations. Curtis (2014) examines the

labor market impacts of the EPA’s NOx budget trading program—which was a type of cap and

trade program enacted in 2003—and reaches conclusions similar to Walker (2013). Specifically,

sectors that are more energy-intensive experience larger losses in unemployment.

Methodologically, the present paper is closely related to Diamond (2016), Piyapromdee

(2021), Colas and Hutchinson (2021), and Colas and Morehouse (2021) (CM). These papers

estimate general equilibrium models of location choice in which wages and rents respond

endogenously to agents’ location choices. The model in CM is designed to measure changes in

residential carbon emissions from relaxing stringent land-use regulations. This paper departs

from the model in CM along three significant dimensions. First, I model energy as a production

input for firms. This allows for endogenous wage changes in response to energy price changes

that ensue from a carbon tax. Second, firms vary across cities and sectors — with different

factor intensities and productivities. The sectoral composition of industries at a given location

will impact the welfare of local workers (for reasons described above) and thus will have first-

order consequences for household sorting. Lastly, households make a joint choice concerning

both their city and their sector. To assess the welfare effects of a carbon tax, my model combines

empirical insights from a large literature on the distributional consequences of carbon pricing

and extends the modeling strategy used in Colas and Morehouse (2021). I build a unified

framework that simultaneously analyzes the variation in labor-market responses to carbon

taxes across cities and sectors.

Overall, my objective in this paper is to improve policy-makers’ understanding of the

9 The tax was supposed to be revenue-neutral. In practice, it did not turn out this way. Yamazaki (2017) notes “tax
credits have been exceeding tax revenues since its implementation.”

10 Other recent empirical work has examined the effects of carbon taxes implemented in different countries, such as
Martin, De Preux, and Wagner (2014). The authors find minimal adverse unemployment impacts from the UK’s
carbon tax.
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distributional consequences of carbon taxes. The empirical structural model I develop allows

me to obtain quantitative estimates of the varying incidence levels across cities and sectors.

The rest of this paper proceeds as follows. Section 3 provides an overview of the data, Section

2 details the structural model, Section 4 discusses the estimation procedure and how key

parameters are identified, Section 5 discusses the parameter estimates, section 6 examines

selected counterfactuals, and Section 7 concludes.

2 Model

This section describes a general equilibrium model where households make a joint, discrete

choice over location and sector. Conditional on location and sector, households consume a

numeraire good, housing, and energy services. These different decisions, and the linkages

between these related markets, are crucial for determining the net welfare effects of a carbon

tax. Labor demand arises from perfectly competitive firms that differ across locations and

sectors. Housing demand follows from the location choices of agents, and housing supply is

increasing in the price of housing.

More specifically, a household has an exogenously given education level and birthplace.

Locations vary in terms of the location-specific consumption goods (amenities) they provide,

wages, rents, the marginal utility of energy consumption, and the carbon intensity of the local

power plants. Sectors vary in input use intensity and unobservable sectoral amenities (e.g.,

employment benefits). Firms with nested CES technologies combine college-educated and

non-college-educated labor with electricity and gas in production within each sector at each

location. Each location functions as a small open economy, so wider national and international

markets always satisfy any excess demand.

To capture the labor-market effects of a carbon tax, I introduce heterogeneity across

locations and sectors of production for the output good. Across locations and sectors, firms vary

by all input-use intensities (a set of parameters). Variation in production parameters reflects

differences across locations in available labor supply and variation in regional energy prices.

Furthermore, across sectors (but not locations), firms vary by their elasticities of substitution

across energy inputs and the mix of energy and labor. Some sectors, such as agriculture,

can substitute relatively easily between labor and energy. Other sectors, such as construction,

cannot.

In my model, a uniform national carbon tax will have location-and sector-specific welfare

effects for several reasons. First, locations vary in their marginal utilities of energy consumption

(e.g. they have different climates), and their power plants have different degrees of carbon

intensities. Consequently, the consumption of the same amount of electricity will imply different

levels of emissions across locations. Second, a carbon tax will have varying effects on wages.
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Consumption of energy in production leads to emissions. The specific amount of energy used

and carbon emitted depends on the firm’s sector and location. After the carbon tax, wages will

change through two particular channels. First, as a direct result of the carbon tax, the relative

price of energy inputs will increase, so the firm will substitute other inputs and reduce output.

Second, there will be adjustments to equilibrium wages to the extent that there are differential

impacts on labor demand across locations and sectors. Thus, workers in regions/sectors with

higher carbon emissions will see a relatively large decrease in wages and will sort towards

sectors and locations with lower carbon intensities.

2.1 Households

A household consists of one or more individuals. If a household contains more than one working-

aged individual, the “agent” refers to the putative household head. Agents are endowed with an

education level and native birth state. They receive utility from the consumption of a numeraire

good, housing, energy services, and amenities. Each agent makes a one-time decision over

locations and employment sectors. Let j ∈ J index cities, n ∈ N index sectors, and e ∈ {l, c}

index education groups (where l indicates that the household has ”less than a college degree”

and c indicates that the agent has a ’college degree or greater”). Agent i’s utility from living in

city j and working in sector n is characterized as:

ui(c, h, xm|e, j, n) = αc
e log c + αH

e log h +
∑

m

αm
e jn log xm + λi jn, (1)

where c is consumption of the numeraire good, h is consumption of housing, xm is consumption

of fuel type m ∈ {elec, gas, oil} and λi jn is amenities. I parameterize amenities as

λi jn = f ( j,Bi) + ξe jn + σeεi jn, (2)

where the function f ( j,Bi) is a function of the agent’s birth location, Bi, and location j, ξe jn

is an unobserved component of amenities that all workers share within an education group-

city-sector. The term εi jn is an idiosyncratic preference shock drawn from a Type I Extreme

Value distribution (EV1) with mean zero and shape parameter σe. Variation in ξe jn captures

differences in amenities across locations and sectors. Heterogeneity in ξe jn across cities (but

within the same sector) are driven by heterogeneity in location-specific market or non-market

consumption goods such as air quality, crime, schools, or the number of restaurants in the city.

Variation in ξe jn within the same city but across sectors is due to variation in the availability of

non-pecuniary benefits across sectors. I parameterize f as:

f ( j,Bi) = γdiv
e I

(
j ∈ Bdiv

i

)
+ γdist

e φ
(

j,Bst
i

)
+ γdist2

e φ2
(

j,Bst
i

)
, (3)
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where I
(

j ∈ Bdiv
)

is an indicator for j being in worker i’s birth division, φ( j,Bst
i ) is the Eu-

clidean distance between location j and the agent’s birth state Bst
i , and φ2( j,Bst

i ) is the squared

Euclidean distance between j and Bst
i .11 As noted by Bayer, Keohane, and Timmins (2009),

individuals tend to have a preference for locations with greater accessibility to their birth state,

where I model accessibility simply as distance.

Agents face the following budget constraint

we jn = c + R jH +
∑

m

Pm
j xm, (4)

where we jn is the wage level for an agent of education level e in city j and sector n. R j and

Pm
j represent the rental and energy prices (of each type m) in city j, which are constant across

sectors and demographic groups.

Maximizing the utility described by equation (1) subject to the budget constraint repre-

sented by equation (4) yields constant shares of income devoted to housing and fuel consump-

tion:

H?
e jn =

αH
e we jn

αe jnR j

xm?
e jn =

αm
e jnwe jn

αe jnPm
j

∀m ∈ {elec, gas, oil},

where to simplify the notation in what follows, I define the parameter αe jn as:

αe jn = αc
e + αH

e +
∑

m

αm
e jn.

I then solve for the agent’s constrained utility maximization problem to yield the corre-

sponding indirect utility function associated with location j and sector n

vi jn =
(
αe jn

)
log(we jn) − αH

e log R j −
∑

m

αm
e jn log Pm

j + f ( j,Bi) + λ̂i jn, (5)

11 This specification is slightly unusual in that I use an indicator for birth division and not state. Since the model
only includes 70 CBSAs (plus 9 census divisions as outside options), not every state is represented – but all census
divisions are.
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where I again simplify the notation by defining:

λ̂i jn = λi jn +
∑

m

αm
e jn log

(
αm

e jn

)
.

Given the EV1 assumption on the idiosyncratic preference shock (εi jn) the probability

agent i with education level e chooses option jn is given by the familiar logit form:

Pe
i jn =

exp( v̄i jn
σe

)∑
j′

∑
n′

exp(
v̄i j′n′

σe
)
, (6)

where v̄i jn = vi jn − σeεi jn.

2.2 Firms & Housing Supply

Firms. Firms competing in perfectly competitive factor markets combine both labor and energy

inputs to produce a sector-specific, tradeable good. I model each location as a small, open

economy, so firms treat their output price (denoted by Pn) as exogenous. Firms in city j and

sector n produce according to:12

Y jn = A jnKη
jnI

1−η
jn ,

where I jn is a conventional CES aggregator for energy and labor inputs also specific to that

sector and location:

I jn =

(
α jnE

ρn
el

jn + (1 − α jn)L
ρn

el
jn

) 1
ρn

el .

Furthermore, the CES aggregator is applied to two-component CES aggregators. E jn

aggregates the use of electricity (denoted by E jn) and natural gas (denoted by G jn) by firms.

L jn aggregates the use of workers with a college degree or more education (denoted by C jn)

and workers without a college degree or less education (denoted by L jn) by firms. Specifically,

these component aggregators are parameterized as:

E jn =
(
ζ jnEρn

e
jn + (1 − ζ jn)Gρn

e
jn

) 1
ρn

e

L jn =
(
θ jnCρl

jn + (1 − θ jn)Lρl
jn

) 1
ρl .

12 The recent applied general equilibrium literature has utilized nested CES production functions with various
functional forms. See Brockway et al. (2017) for a discussion.
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Firm electricity demand generates emissions indirectly (at the regional power plants), so

these emissions are sensitive to both use and the carbon efficiency of local power plants. Natural

gas consumption leads to direct emissions but does not vary by location because I assume the

carbon emissions rate of natural gas is the same everywhere.

Given that I assume factor markets are perfectly competitive, input prices are equal to

their marginal products. I assume the supply of capital is perfectly elastic with rental rate r̄. The

firm chooses its level of capital such that the price of capital is equal to its marginal product.13

Specifically, the first-order condition for capital utilization yields:

K jn =

PnA jnηI
1−η
jn

r̄


1

1−η

. (7)

Using equation (7), I can write the system of first-order conditions to derive the inverse energy

and labor demand curves:

PE
jn = A jnI

1−ρn
el

jn E
(ρn

el−ρ
n
e )

jn α jnζnEρn
e−1

jn

PG
jn = A jnI

1−ρn
el

jn E
(ρn

el−ρ
n
e )

jn α jn(1 − ζn)Gρn
e−1

jn

WC
jn = A jnI

1−ρn
el

jn L
(ρn

el−ρl)
jn (1 − α jn)(θ jn)Cρl−1

jn

WL
jn = A jnI

1−ρn
el

jn L
(ρn

el−ρl)
jn (1 − α jn)(1 − θ jn)Lρl−1

jn ,

(8)

where

A jn = PnA jn

(
A jnη

r̄

) η
1−η

(1 − η).

Rents. The housing supply curve is upward sloping with city-specific elasticities and intercepts.

Specifically, I parameterize the housing supply curve as:

R j = K̄ jH
β j
j . (9)

Differences in K̄ j across cities reflect differences in local construction costs. The amount of land

available for production and the tightness of local land-use restrictions drives variation in β j

(Saiz, 2010). For example, consider a city with less available land for development. All else

equal, the marginal cost of developing land that is relatively more scarce will be greater, which

13 In Appendix A.1.1 I provide more details for the first order condition derivations.
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will lead to a higher value of β j. Taking logs of equation (9) yields:

log(R j) = log(K̄ j) + β j log(H j). (10)

The log-log form in equation (10) highlights the constant elasticities of the housing supply

curves used in the model.

2.3 Energy Supply

There are three energy markets in the model: electricity, natural gas, and oil. For each market,

demand is endogenous and downward sloping. I assume that natural gas and fuel oil are traded

on international markets, and their supply is perfectly elastic. Due to high transmission costs, I

assume electricity is traded within NERC regions but not across them. Furthermore, I segment

electricity supply into two separate markets: residential and industrial. Electricity supply varies

across the type of consumer k due to differences in transmission costs for households compared

to firms. Conditional on consumer type, electricity supply varies across local labor markets j

due to differences in transmission costs within a NERC region R. I parameterize the inverse

supply curve for electricity as:

Pelec
k j = ak jQ

µ
R( j), (11)

where k ∈ {Residential, Industrial} indexes the consumer “type”, ak j is the consumer-city inter-

cept, QR( j) is the electricity supply in NERC region R (where R( j) maps cities to their corre-

sponding NERC region), and µ is the inverse electricity supply elasticity.

To be clear, the model developed in this paper says nothing about dynamics, and any iden-

tified equilibrium is considered a “long-run” equilibrium. Typically in the short run, electricity

markets models use “constant-order dispatch curves.” In the long run, however, electricity

suppliers can respond to changes in demand by opening new power plants or switching fuel

types.14

2.4 Emissions

In the context of the model, carbon emissions arise from the consumption of energy inputs

by agents and firms. Agents consume natural gas, fuel oil, and electricity, whereas firms

consume natural gas and electricity. I assume a constant carbon emissions factor of 117 lbs

per thousand cubic feet for natural gas and 17 lbs per gallon for fuel oil.15 Emissions from

14 Scott (2021) shows that the EPA’s Mecury and Toxic Air standards induced many power plants to convert their
coal generators to natural gas.

15 https://www.eia.gov/tools/faqs/faq.php?id=73t=11
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electricity generation vary across NERC regions, denoted by δelec
R

. I assume that total regional

carbon emissions from electricity in a NERC region equals the output-weighted average carbon-

emission factors for individual electricity generating units (EGUs). The emissions factor in

NERC region R is therefore given by:

δelec
R

=
∑
g∈R

elecg

elecR
×

CO2,g

elecg
,

where elecg is the amount of electricity produced by a generator g, elecR is the total amount of

electricity produced in NERC region R and CO2,g is the total (yearly) amount of carbon dioxide

emitted by generator g. More generally, I write the emissions factor for fuel-type m in city j

as:

δm
j =

δ
elec
R( j) if m ∈ {elec}

δm if m ∈ {gas, oil}

To obtain aggregate emissions, I multiply the energy consumption in city j and sector n by the

respective conversion factors for agents and firms and then sum these. Concretely, this is given

by:

Emis =
∑

j

∑
n

δm
j f̂ jn,

where f̂ jn =
∑

m
∑

e Ne jnxm
e jn + E jn +G jn is the sum of city-sector agent fuel consumption (Ne jnxm

e jn)

and firm fuel consumption.

2.5 Equilibrium

Equilibrium in the model is achieved when agents and firms make optimal choices and all

markets clear. Specifically, an equilibrium requires:

(1) Utility Maximization. Each agent must be in a sector and at a location that yields maxi-

mal utility, given their constraints. The equilibrium population for each education group-

city-sector, N?
e jn, can thus be determined by: N?

e jn = N × se jn, where se jn = 1
N

∑
i Pe

i jn are the

shares computed from the choice probabilities in equation (6).

The population distribution determines each city’s housing and energy demand. Housing

demand in city j is given by the sum of all individual agents’ demands. I write total
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equilibrium housing and energy demand in city j as

HDj =
∑
e∈E

∑
n∈N

N?
e jn ×

αH
e we jn

αe jnR j

xDj =
∑
e∈E

∑
n∈N

N?
e jn ×

αm
e jnwe jn

αe jnPm
j

∀m ∈ {elec, gas, oil.}

(12)

Aggregate labor supply is given by the number of efficiency units of labor supplied by

each worker:16

LSe jn = Ne jn × `
e. (13)

(2) Profit Maximization. Firms maximize profits. This implies that the first-order conditions

given by equation (8) must be satisfied.

(3) Market Clearing. All markets in the model need to clear. Namely, supply and demand

must be balanced in the labor market, in the housing market, and in all energy markets.

3 Data

I combine data from multiple sources. I obtain individual-level data from the ACS and Census.

Energy prices and sectoral energy use data come from the Energy Information Association

(EIA). I employ data from the Environmental Protection Agency (EPA) to calculate power-plant

carbon emissions.

3.1 Sources

Household Data. The time-aggregated 5-year ACS (Ruggles et al., 2010) has detailed individual-

level information for more than 5 million individuals in the US from 2012-2016. Crucially, the

ACS has both where the individual currently resides (down to the MSA level) and their current

sector. Furthermore, the ACS provides information on the individual’s monthly rent payments,

pre-tax and after-tax wages, and energy expenditures for various fuel types. In estimation, I use

repeated cross-sections of 5% samples of 1990, 2000, and 2010 censuses. I stratify households

into one of two education levels: having a college degree (or more) or having less than a

college degree. In selecting my sample, I closely follow the strategies used by other researchers

and thus relegate the details of the process to Appendix A.7.

CBSA Data and Sectoral Data. My measure of a “city” (or location, in the model) is a Core

Based Statistical Area (CBSA). CBSAs correspond to distinct (and relatively closed) labor

16 Estimation of efficiency units of labor is relatively standard and thus the details can be found in Section A.1.2
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markets and are the Office of Management and Budgets’ official definition of a metropolitan

area. I restrict the choice set to the 70 largest CBSAs by 1980 population, plus nine additional

“outside options” — one for each census division. I categorize workers in one of five sectors:

services, construction, agriculture, manufacturing, and an outside option sector. These five

sectors account for roughly 90% of total 2016 employment.17 My selection of cities and sectors

results in a choice set containing 395 elements, where each choice is a city-sector pair. I focus

on household consumption of three energy types: electricity, natural gas, and fuel oil. The ACS

and census contain information on household expenditures of each of these energy types. I

combine household energy expenditure data with state-level energy price data from the EIA to

calculate household energy consumption. The methods by which I construct wage, rent, and

household energy consumption series in Appendices A.1.2, A.1.3, and A.2 respectively.

Energy and Emissions Data. I use sector-level aggregated energy consumption data from

the EIA. The EIA’s Manufacturing Energy Consumption Survey (MECS) provides information

on aggregate manufacturing energy consumption, while EIA’s Annual Energy outlook provides

aggregate energy consumption data for construction, agriculture, and other sectors. I also

collect data on aggregate electricity and natural gas consumption for the services sector from

the EIA. For privacy (and security) reasons, none of my data contain information about sectoral

energy demand at the city level. I impute city-sector energy consumption as that city’s share of

employment (for that sector) multiplied by total sectoral energy consumption. In other words,

energy consumption for a city-sector is proportional to the city’s level of employment for that

sector.18

I assume a constant carbon emissions rate for natural gas (117 lbs per thousand cubic

feet) and for fuel oil (17 lbs per gallon), respectively. Carbon emissions from electricity, how-

ever, vary with the fuel used to generate that electricity. I use power-plant level data from

the EPA’s Emissions Generation Resource Integrated Database (eGRID). Local power plants

often trade with each other to meet demand, so I use nine North American Electric Reliability

Council (NERC) regions to calculate carbon emissions factors for electricity. While power plants

occasionally trade across the borders of these NERC regions, the NERC regions are, for the

most part, effectively closed markets Holland and Mansur (2008). I calculate the emissions

factor as the weighted average CO2 emissions per megawatt-hour of electricity of all plants in

a given NERC region. A map of these regions and their respective emissions factors is provided

in section A.5.
17 I drop some sectors such as military and other public services from the sample. For more details, see Appendix

A.7.
18 For more details, see Appendix A.7.2. This assumption implies that energy-labor ratios will be constant across

cities (but not necessarily industries).
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4 Estimation

In taking my model to the data, I use a combination of calibration and estimation. I focus

on the exposition of the labor supply parameters. The labor demand and rent parameters are

fairly standard, and are described in sections A.1.2 and A.1.3, respectively. Appendix Table 7

provides a full summary of the model’s estimation and calibration.

4.1 Labor Supply

To estimate the preference parameters of the agent’s utility function, I use a two-step estimation

procedure that combines maximum likelihood and an instrumental variables approach. The

estimation procedure exploits repeated cross-sections of household microdata. Specifically, I

use repeated cross-sections of 5% samples of the U.S. Census for 1990, 2000, and 2010 and the

2017 five-year American Community Survey. Let t ∈ {1990, 2000, 2010, 2017} denote the sample

year. In what follows, I provide details for each step of the estimation routine.

Step one: Maximum Likelihood. I normalize indirect utility by the standard deviation of the

preference shock. More specifically, I divide equation 5 by σe to yield:

vi jnt = Θw
e log(we jnt) − Θr

e log(R jt) −
∑

m

Θm
e jnt log Pm

jt+

Θdiv
et I

(
j ∈ Bdiv

i

)
+ Θdist

et φ
(

j,Bst
i

)
+ Θdist2

et φ2
(

j,Bst
i

)
+

ξe jnt + εi jnt,

where the new notation for the preference parameters (Θ) indicates the original parameter

multiplied by 1
σe

. I write the shared (conditional on education group) component of utility

associated with each city-sector as:

δe jnt = Θw
e log(we jnt) − Θr

e log(R jt) −
∑

m

Θm
e jnt log Pm

jt︸                                                      ︷︷                                                      ︸
observed

+

not observed︷︸︸︷
ξe jnt . (14)

I will refer to the δe jnt values as the “mean utilities” associated with each choice. I emphasize

the separability between the observable and unobservable components to the mean utilities

because this structure is crucial for matching the model’s choice shares to the choice shares

observed in the data. Given equation (14), I can re-write the probability that agent i chooses
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city-sector jn as:

Pi(δe jnt,Θet) =
exp

(
δe jnt + Θdiv

et I
(

j ∈ Bdiv
i

)
+ Θdist

et φ
(

j,Bst
i

)
+ Θdist2

et φ2
(

j,Bst
i

))
∑
j′∈J

∑
n′∈N

exp
(
δe j′n′t + Θdiv

et I
(

j′ ∈ Bdiv
i

)
+ Θdist

et φ
(

j′,Bst
i

)
+ Θdist2

et φ2
(

j′,Bst
i

)) . (15)

Then, using these choice probabilities, the log-likelihood function is given by:

L(Θet) =

Ne∑
i=1

∑
n∈N

∑
j∈J

Ii jn log(Pi(δe jnt,Θet)), (16)

where Ii jn is an indicator equal to one if agent i chooses to live in city j and work in sector n and

Ne is the total number of workers of education group e. I jointly estimate the mean utilities δe jnt

and the parameter vector Θet with a nested fixed-point algorithm, proposed in Berry (1994).19

For details of the implementation of this algorithm, see appendix A.6.1.

Step two: Decomposition. In the second step, I decompose the mean utilities to estimate

the parameter vector (Θw
e , Θ

r
e). To limit the dimensionality of the parameter space, I elect not

to estimate the parameters Θm
e jnt. Instead, I follow Colas and Morehouse (2021), and define

α̃m
e jnt =

αm
e jnt
αe jt

. Given the Cobb-Douglas utility function, the expenditure share of fuel type m

is given by
xm

e jnt×Pm
jt

wm
e jnt

= α̃m
e jnt. I choose values for the α̃m

e jnt to match the estimated expenditure

shares.20 Next, I rewrite the mean utility as:

δe jnt = Θw
e log(w̃EA

e jnt) + Θr
e log(R jt) + ξe jnt, (17)

where w̃EA
e jnt =

log(we jnt) −
∑

m

(
α̃m

e jnt log(P jt)
)

1 −
∑

m α̃
m
e jnt

is income adjusted for the energy budget.21 Taking

first differences of equation (17) yields my estimating equation:

∆δe jn = Θw
e ∆ log(w̃EA

e jn) + Θr
e∆ log(R j) + ∆ξe jn, (18)

where ∆ξe jn is the change in the shared unobservable component of amenities. Changes

in unobservable amenities at the city or sector level (such as construction of a new park)

mechanically confound OLS estimates of Θw
e and Θr

e. For example, consider a city-wide school

19 I implement this algorithm with the Nevo (2000) strategy to speedup the contraction mapping proposed in Berry

(1994). With a slight abuse of notation, this is given by exp(δτ+1) = exp(δτ) ×
sdata

jn

smodel
jn (δτ)

where τ denotes iteration

number and smodel
jn (δτ) are the predicted choice shares—which are a function of the mean utilities.

20 For details on how I impute baseline energy use by city and demographic group, see Appendix A.2.
21 For details of this transformation, see Appendix A.3.
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improvement program.22 This will induce migration towards this city (due to an increase in

the value of choosing this location). Equilibrium wages and rents adjust to the new population

level (governed by the equations described in Section 2), further affecting utility. Thus, even

after taking first differences, Θw
e cannot be consistently estimated via pooled OLS.

I use an instrumental variables strategy that exploits exogenous local labor demand shocks.

More specifically, I employ an instrument first introduced by Katz and Murphy (1992). The

instrument uses historical industry concentration patterns at the city level and interacts them

with changes in hours worked across each industry.23 Specifically, I can write the Katz-Murphy

(KM) index for city j between any two sample periods as:

∆Ze jnt =
∑
ι∈n

ω1990
e jι ×

(
∆Hourse,− j,ι

)
,

where ω1990
e jι is the 1990 share of total hours worked by industry ι in city j by education group e

as a fraction of the total hours worked in all industries in city j by education group e in 1990.

∆Hourse,− j,ι is the change in national hours worked in all cities other than city j. I construct

the differences in national hours (omitting city j), ∆Hourse,− j,ι, as decadal differences between

each of my sample years.24

Finally, to instrument for Θr
e, I follow Diamond (2016) and interact the Katz-Murphy index

with the elasticity of the housing supply curve. Note that I construct my current instrument such

that it generates exogenous labor demand shocks at the city-sector level. Rents are assumed to

vary only across cities (and not sectors), so I use a slightly different version of the instrument in

which I sum over all industries and sectors within a city. Concretely, I write the “city-level” KM

index as: ∆Z̃e jt =
∑

n ω
1990
e jn ×

(
∆Hourse,− j,n

)
. Differences in the responsiveness of housing prices

to population changes generate the variation used to identify Θr
e. For example, suppose we have

two cities that experience identical labor demand shocks. The city with the less-elastic housing

supply curve will see rents bid up faster. This variation in rents is assumed to be exogenous

to changes in unobservable amenities. After estimating the agent’s preference parameters and

the mean utilities, I calculate the unobservable component of amenities as the residuals from

equation (17).

22 Diamond (2016) considers the case where residential amenities are endogenous to individual location choices.
23 For a discussion of shift-share instruments see Goldsmith-Pinkham, Sorkin, and Swift (2020).
24 Given that I am estimating the model’s labor supply parameters using pooled first differences, I need to estimate

mean utilities (and hence individual moving-cost parameters) for each of my cross-sections. Each cross-section has
a likelihood function constructed from millions of observations and 395 choices. Even with cloud computing, it is
not computationally feasible to estimate the individual choice parameters on the entire sample. As a consequence,
I make various sample restrictions to limit the number of observations. I describe these in detail in Section A.7.
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4.2 Other Parameters

Electricity Supply The reduced-form equilibrium expression for residential electricity prices

is given by:

log(Pelec
k j ) = ak j + µ × log(xelec,D

j ),

where xelec,D
j =

∑
e∈E

∑
n∈N Ne jn ×

αm
e jnwe jn

αe jPm
j

is electricity demand in city j. I calibrate the electricity

supply curve using κ = 1
2.7 following Dahl and Duggan (1996). Simplifying this expression

yields an analogous expression to equation 37:25

log(Pelec
k j ) =

µ

1 + µ
log

∑
e

∑
n

Ne jn

(
αelec

e jn × we jn)
)

αe jn

 + ak j for k = residential, (19)

I choose the ak js to match the data. When k = industrial, the I set ak j = log(Pelec
k j ) − µ × log(E j),

where E j =
∑

n E jn is firm energy consumption in city j (aggregated over sectors).

Firms and Rents As does Card (2009), I calibrate the elasticity of substitution between

college and non-college workers to 2.5. I set my baseline calibration of energy-labor substitution

elasticities to those in Koesler and Schymura (2012).26 Inter-Fuel-substitution elasticities come

from Serletis, Timilsina, and Vasetsky (2010).

I solve for input use intensities and total factor productivity (TFP) using relatively standard

algebra and thus relegate the details to Appendix A.1.2. I calibrate housing supply elasticities

to those estimated in Saiz (2010). The reduced-form rental supply can be found in Appendix

A.1.3.

5 Parameter Estimates

Table 1 displays the preference parameters estimates.

25 I abuse notation here slightly. Technically, the intercept term in equation 19 is a j
1+κ

.
26 Fried (2018) calibrates a similar parameter, the elasticity of substitution between energy and non-energy inputs,

to be close to zero. This requires energy and non-energy inputs to be used in fixed proportions.
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No College College
Year Θdiv

lt Θdist
lt Θdist2

lt Θdiv
ct Θdist

ct Θdist2
ct

1990 1.696 -3.4318 0.741 1.418 -2.649 0.628
(0.004) (0.002) (0.001) (0.063) (0.033) (0.016)

2000 1.677 -3.438 0.806 1.412 -2.618 0.644
(0.011) (0.005) (0.003) (0.036) (0.010) (0.004)

2010 1.702 -3.226 0.711 1.474 -2.523 0.601
(0.003) (0.003) (0.002) (0.011) (0.006) (0.003)

2017 1.698 -3.218 0.696 1.489 -2.609 0.644
(0.004) (0.005) (0.004) (0.012) (0.006) (0.003)

Income and Rents No College College
Θw

e 3.558∗∗∗ 7.0362∗∗∗

(0.591) (0.815)

Θr
e -2.160∗∗∗ -3.731∗∗∗

(0.372) (0.348)
Cragg-Donald F-Stat: 14.63

Table 1: Standard errors are in parentheses. Maximum likelihood standard errors are
estimated with numerical derivatives. Stars indicate statistical significance: ∗p<0.05; ∗∗p<0.01;
∗∗∗p<0.001.

All of the parameter estimates have signs that are consistent with the extant literature. For

each education group and year, Θdiv
et > 0 and thus agents receive a utility premium for locating

within their birth division. Furthermore, all agents receive disutility for locating farther away

from their birth state (Θdist
et < 0). However, the marginal disutility of an additional mile on

utility declines with distance (Θdist2
et ). The birth-division premium and marginal disutility of

each mile are also larger in absolute magnitude for college than non-college-educated agents.

These estimates suggest that household heads with a college degree are more mobile than those

without a college degree.

To my knowledge, none of the existing literature uses the exact functional form I have

chosen for individual moving costs. However, Diamond (2016) estimates a birth-division

indicator (Θdiv
et ) for colleged and non-college-educated workers while Colas and Hutchinson

(2021) estimate the distance and distance squared parameter (Θdist
et and Θdist2

et ). My estimates

forΘdist2
et are very stable across years for both education groups, with the premium being roughly

20% higher for agents without a college degree. This is consistent with Diamond (2016) – who

estimates the parameter to be consistently around 1.2 for college-educated and non-college-

educated workers. My parameter estimates for Θdist
et and Θdist2

et are in a range similar to what
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is estimated Colas and Morehouse (2021) (CM). However, CM estimates the parameters for

different demographic groups, so a direct comparison is inappropriate.

It is even more difficult to compare my estimates of Θw
e and Θr

e to the literature, given

that I am the first to estimate these parameters for city-sector pairs. My estimates are slightly

smaller in magnitude than those of Colas and Hutchinson (2021) and in a similar range to

those of Diamond (2016). As do both of these papers, I find Θw
c > Θw

l , which indicates that

workers with a college degree (or more) are more responsive to changes in wages. I also find

that |Θr
l | > |Θ

r
c|, which is different from Colas and Hutchinson (2021) but consistent with some

specifications of Diamond (2016).

Model Fit. I use the fully estimated model to simulate the baseline equilibrium.27 In Figure 1, I

compare the model’s predicted city-sector choice shares by education group to the data:

College No College

2.5 5.0 7.5 10.0 12.5 2.5 5.0 7.5 10.0 12.5
2.5

5.0
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Figure 1: For college and non-college-educated workers, these two graphs plot the model’s
predicted log city-sector shares on the vertical against the corresponding log city-sector shares
in the data. The black dashed line is the 45-degree line.

Appendix A.2.4 provides analogous scatterplots for household energy consumption. The

model appears to fit the data well.

6 Counterfactuals

Recently, there has been an increasing legislative effort in the US to pass a carbon tax. In late

July of 2019, three carbon tax bills were introduced to Congress: the Climate Action Rebate Act

of 2019 (CAR act), the Stemming Warming and Augmenting Pay Act (SWAP Act), and the Raise

27 Details of how I solve for the equilibrium of the model can be found in Section A.6.2.
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Wages, Cut Carbon Act of 2019 (RWCC Act). Fundamentally, all three bills are examples of

Pigouvian taxes; however, their implementations vary. One of the primary differences between

the bills is the use of government revenue. For example, the CAR act proposes distributing

70% of the tax revenue to low-income and middle-income households in the form of lump-sum

payments. In contrast, the SWAP and RWCC acts propose using revenues to reduce payroll

taxes.28 Motivated by these recent examples of proposed legislation, I use my model to assess

carbon pricing in conjunction with various transfer schemes.

A carbon tax will affect the price of energy differently for each fuel type. Recall that I as-

sumed the supply curves for fuel oil and natural gas are perfectly elastic, and the emissions rate

for each of these fuel types is constant across locations and given by δm. With the introduction

of a carbon tax, the price of natural gas and fuel oil in city j is given by:

P̃m
j = Pm

j + τδm.

For electricity, I construct city-level supply curves as in Equation (11). With the carbon

tax, the supply curve is given by:

Pelec
k j (τ, δR( j)) = ak jQ

µ
R( j) + (τ × δelec

R( j)),

where I write the electricity supply curve, Pelec
k j (τ, δR( j)), as a function of the tax level τ, and the

emissions rates δR( j).

6.1 The Welfare Effects of Carbon Taxes

In this section, I simulate a carbon tax of $31 dollars per ton—the Social Cost of Carbon (SCC)

as estimated by Nordhaus (2017). I calculate the compensating variation (CV) for agent i

as:

CVi = E[V(τ > 0)] − E[V(τ = 0)] ×
we jn

Θw
e
, (20)

where V(τ) = vi jn(τ, j?, n?) is the indirect utility, given tax level τ, evaluated at equilibrium

choices j? and n? and the expectation E is taken over the idiosyncratic preference shocks. Note

that because vi jn is measured in log-utility units, E[V(τ > 0)] − E[V(τ = 0)] is approximately

equivalent to percentage change in utility. Multiplying by we jn
Θw

e
converts this to a dollar amount.

28 For more details of these bills, see https://taxfoundation.org/carbon-tax-bills-introduced-congress/.
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Agent i’s expected utility is given by:

E[V(τ)] = γ̄ + log

∑
j′∈J

∑
n′∈N

exp

Θw
e log(we j′n′) − Θr

e log(R j′) −
∑

m

Θm
e j′n′ log Pm

j′ + ξe j′n′ + f ( j,Bi; θ̂e)


 ,

where γ̄ is Euler’s constant and f ( j,Bi; θ̂e) is the distance function (equation 3) evaluated at the

estimated parameter vector θ̂e. The distribution of CV across cities and sectors is displayed in

Figure 2.

Figure 2: The distribution of compensating variation from a carbon tax of $31 per ton in the
absence of coal-fueled electricity.

Figure 2 demonstrates considerable individual heterogeneity in the burden of a carbon tax.

The model predicts that carbon prices are regressive; the mean college educated agent faces a

tax burden of $926 while the mean non-college-educated agent faces a burden of $1, 417.29 The

tax regressivity is consistent with a large literature that observes that lower-income households

spend larger portions of their budget constraints on energy and work in more energy-intensive

sectors. Indeed, this is reflected in my estimates of α̃m
e jn (energy type m’s budget share).30 Addi-

tionally, the model predicts a significant decline in manufacturing employment. Manufacturing,

which is relatively carbon-intensive, experiences an 11.1% decrease in employment with a

12.7% reduction in college workers and a 10.4% reduction in college workers. The services

sector—which is relatively green—experiences an increase in employment. There is a 2.01%

29 I did not impose the tax regressivity on the model’s structure in any way.
30 Summary statistics for these estimates can be found in Table 6.
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increase in aggregate services employment, with a 1.78% increase for college workers and a

2.34% for non-college workers.

Figures 10 and 15 in Appendix A.5.2 disaggregate Figure 2 by industry and Census Re-

gion. Manufacturing has a substantially higher tax burden than other sectors for both college-

educated and non-college-educated workers. Cities and sectors in the Midwest and West have

marginally higher average compensating variation from the tax than other regions. Table 2

summarizes the key results from the carbon tax.

τ = $31/ton: %∆ Emissions: −19.8

No Transfers Mean CV ($) Mean/st.dev CV %∆ Man. Emp %∆ Ser. Emp

Total −1, 221 −3.14 −11.1 2.01

College −926 −3.55 −12.7 1.78

Non-College −1, 417 −4.16 −10.4 2.34

Table 2: Counterfactual Results from a $31 per ton carbon tax. Mean CV is calculated using
equation (20). Percent changes in emissions and employment are relative to baseline levels.

Non-Monetized Incidence. While my primary welfare metric is compensating variation, I

also examine tax incidence defined as the percent change in wages needed to compensate

households for the carbon tax.31 Compensating variation may mask substantial underlying

heterogeneity in tax burden due to differences in wages across cities. For example, San Fran-

cisco may experience a small degree tax burden as a percentage of wages. San Francisco has a

services-based economy with a mild climate and carbon-efficient power plants. However, San

Francisco has high average wages. Thus, the average household in San Francisco may require

a large dollar transfer in response to the carbon tax. Conversely, Detroit may experience a

large loss in utility due to its manufacturing-oriented economy, less mild climate, and relatively

dirtier power plants. Detroit also has relatively low wages, which lowers the dollar amount

needed to compensate households in Detroit for the carbon tax, all else equal. Despite the

potentially larger loss in utility in Detroit, the compensating variation in San Francisco could

be higher due to differences in wages across the two cities.

Indeed, I find compensating variation is higher (in magnitude) in cities that deliver high

wages, such as those on the West Coast and New England. In Figure 11, I replicate figure 10,

except I compare non-monetized tax incidence rather than changes in compensating variation.

I aggregate these changes to the state level and map them in Figures 12 and 13. These figures

reveal that households in the Midwest and South generally experience larger percent decreases

in utility from the carbon tax, despite having similar if not lower compensating variation.

31 Compensating variation is in levels; this metric is a percent change. I calculate percent change in utility as
CV × 1

we jn
, or just (E[V(τ > 0)] − E[V(τ = 0)]) × 1

Θw
e

.
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Migration. Next, I examine how the spatial distribution of households shifts with the carbon

tax. More specifically, I calculate the percent change in aggregate population and by education

group for each city, aggregated across all sectors. I display the results in Appendix A.5.3 at the

state level, both aggregated and disaggregated by education level.

In general, the model predicts that cities with more mild climates and less-emissions

intensive power plants will experience population increases. For example, the carbon tax

induces an inflow of households to Seattle, Washington, increasing the city’s population by

1.5%. Washington is part of the WECC NERC region (see Figure 8) and has relatively carbon

efficient power plants, so electricity prices do not increase as much in Seattle as in other cities.

Additionally, Seattle’s economy is more services-oriented than many other cities. On the other

hand, cities such as Cincinnati experience population decreases. Relative to Seattle, Cincinnati’s

climate requires more household energy, and the electricity in Cincinnati is less carbon-efficient

than in Seattle. Additionally, Cincinnati has a lower share of workers in relatively carbon-

efficient services-based jobs than Seattle. Overall, the model predicts that the carbon tax will

reduce Cincinnati’s population by 2.29%.

Despite being less mobile than college-educated households, the model predicts larger

changes in shares of non-college-educated households in most cities. In Figures 18 and 17, I

show that the average city experiences a 0.1% decrease in its share of non-college-educated

households, and only a .03 % decrease in it’s share of educated college households. College-

educated workers are more responsive to changes in prices (as estimated in section 4), so the

relatively larger migration flows of non-college workers demonstrate the larger degree of tax

burden that these households bear.

Tax Incidence and Elections. Next, I examine how changes in utility from the carbon tax

correlate with political preferences. I focus my analysis on the share of cities voting for Donald

Trump during the 2016 presidential election. Donald Trump’s voting base was less educated

and concentrated in less populated areas (Doherty, Kiley, and Johnson, 2018)—features that

are correlated with higher tax incidence.32

I combine my tax-incidence estimates with publicly available, county-level presidential

election voting data from the MIT Election Data and Science Lab (MIT, 2018). For each CBSA

in my sample, I compute the average (across counties within the CBSA) share of the vote going

to Donald Trump in the 2016 primary presidential election, weighted by total votes in each

county. In Figure 19, I plot the tax incidence (again, defined as the percent change in wages

needed to compensate households for the carbon tax) against Trump’s vote shares. Additionally,

32 Donald Trump has been consistently skeptical of climate change and policy. On December 6th, 2013, in a tweet
that was deleted with his account, Donald Trump stated “Ice storm rolls from Texas to Tennessee - I’m in Los
Angeles and it’s freezing. Global warming is a total, and very expensive, hoax!”
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I plot compensating variation against share of household voting for Trump in Figure 20.

As expected, counties with a larger share of Trump voters experience larger changes

decreases in utility, on average.33 The counties with a higher percentage of Trump voters (and

thus larger tax incidence) are arguably those least likely to vote in favor of a carbon tax. Further

complicating the political feasibility of the tax is that areas with a lower share of Trump voters

have a higher (in magnitude) compensating variation, on average. This difference between tax

incidence and monetized tax incidence (compensating variation) is again driven by differences

in wages across cities; cities such as San Francisco have a low share of Trump voters, relatively

low tax incidence, but relatively high compensating variation due to the high baseline wages

in San Francisco. Overall, these results highlight a particular challenges with the political

feasibility carbon-pricing legislation.

6.2 The Effects of Coal-Fired Electricity

In large part due to significant decreases in natural gas prices with the advent of fracking

technologies, the share of electricity generated by coal in the United States has dropped precip-

itously since the mid-2000s. In the early 2000s, coal generated over 70% of power nationally.

By 2015 coal’s share had diminished to under 40% of generation.34 Coal emits a considerable

amount of carbon compared to natural gas, so the declining share of coal will have first-order

consequences for the welfare effects of pricing carbon. As coal’s share of electricity generation

continues to decline, the revenue needed to compensate households for carbon pricing will also

fall. I illustrate the decline in coal nationally and across NERC regions in figure 3.

33 Note that I did not target political preferences in the estimation, so this result strengthens the validity of the
model’s parameter estimates.

34 This is for many reasons in addition to the decline of natural gas prices, but this is not the point of this paper. See
Arias, Reinbold, and Restrepo-Echavarria (2017) for a brief discussion.
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Figure 3: Share of electricity generated by coal nationally and across NERC regions between
2004 and 2016. Shares are computed using annual plant-level generation data from eGRID.

No Coal. Motivated by the remarkable decline in the share of the electricity generated by coal,

I use the model to decompose the tax incidence into two components: coal and non-coal. More

specifically, I estimate the proportion of the total compensating variation that is attributable

to coal-fired electricity. I recalculate emissions factors for each region in the absence of coal.

Without coal, there are considerably lower emissions rates across the US. A map of the changes

in emissions factors from dropping coal is in Section A.5. With the new, absent-of-coal emissions

factors in hand, I resimulate the $31 per ton carbon tax under a “no-coal” economy. I display

the distribution of CV, split by education level in figure 4.

Figure 4: The distribution of compensating variation from a carbon tax of $31 per ton in the
absence of coal.
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Without coal, the mean college and non-college agents experience a $352 and $543 dollar

decline in their tax incidence. Percentage-wise, the change is marginally larger for non-college

workers as they are generally more energy-intensive cities and sectors.

Furthermore, the distribution of incidence compresses without coal-fired electricity. The

distributions of tax incidence are tighter due to the geographic distribution of coal; many coal

plants are in the Midwest and South. In Appendix A.5.2 figure 10 I show that for non-college

workers, the change in tax incidence is greatest in the midwest. In contrast, for college workers,

the change in incidence is remarkably stable across regions. I display the main results for the

“no-coal” scenario in table 3 below.

τ = $31/ton:

No Coal Mean CV ($) Mean/st.dev CV %∆ Man. Emp %∆ Ser. Emp

Total −757 −3.11 −8.15 1.51

College −594 −3.33 −9.56 1.31

Non-College −874 −4.06 −7.51 1.68

Table 3: Counterfactual Results from a $31 per ton carbon tax in the absence of coal. Mean CV
is calculated using equation (20). Percent changes in emissions and employment are relative
to baseline levels.

To be clear, this is purely a decompositional and bounding exercise of the tax incidence

for what the distribution of incidence could look like without coal. A carbon price will impact

the rate at which coal shuts down. In reality, the supply curves of electricity are determined by

a “constant dispatch order.” The plant uses the lowest marginal cost fuel-type generator until a

fuel-specific capacity constraint. The plant switches on the next lowest (fuel-specific) marginal

cost generators upon hitting the fuel constraint. As coal has a low marginal operating cost,

removing coal would likely significantly impact the supply curve slope, further changing the

impact of a carbon tax on electricity prices and tax incidence. I leave it to future work to recover

the incidence of carbon pricing with dynamic coal shares and a micro-founded electricity supply

curve.

This counterfactual is highly policy-relevant as coal’s decline continues. My decomposition

demonstrates that a significant proportion of the total compensating variation (roughly 40%)

from carbon pricing is attributable to coal-fired electricity. These simulations suggest policy-

makers may compensate households significantly less to remain indifferent between a carbon

tax and no tax in a low coal future.
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6.3 Equity and Emissions

Next, I examine the relationship between progressive transfers and aggregate emissions. I

provide a motivating example from the data and then extend the baseline model to include

government payments.

Wages and Emissions. Variation in household carbon emissions across cities and sectors is

well documented. This variation is largely driven by 1) differences in climate across cities, 2)

differences in emissions intensities from regional power plants, 3) differences in preferences

for energy consumption, and 4) differences in income levels across households. Cities also host

different industries which vary in their energy use, and hence emissions intensities. Thus, any

policy that affects the spatial and sectoral population distribution will also impact aggregate

emissions.

If lower-wage city-sectors have, on average, higher emissions, then progressive redistri-

bution may increase aggregate emissions. This relationship arises because the more carbon-

intensive city-sector combinations will receive larger transfers (all else equal), which will induce

a larger share of workers to move to these cities and or into these sectors, raising aggregate

emissions. However, the effect of the transfers on aggregate emissions also depends on substi-

tution patterns across cities and sectors. For example, even if the correlation between wages

and emissions is positive, progressive transfers may induce a large share of workers into a low-

wage yet emissions-intensive city-sector. Thus, the effect of progressive transfers on aggregate

emissions jointly depends on the correlation between wages and emissions and substitution

patterns across city sectors.35

In Figure 5, I plot city-sector emissions per capita—defined as the sum, per capita, of firm

and household emissions per—against city-sector wages.

35 There are two exceptions to this: if there are only two choices (cities and or sectors), or if wages and emissions
are perfectly correlated. In the first case, there is only one option for workers to switch into the choice with the
higher transfers, and given the negative correlation between wages and emissions, this choice will be lower. In
the latter case, lower-wage choices have strictly lower emissions. Thus any substitution to a lower wage choice
would reduce aggregate emissions.
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Figure 5: City-sector level household carbon emissions and firm emissions plotted against
average wages. On the vertical axis, total emissions per capita are calculated as aggregated
firm and household emissions divided by the respective city-sector employment count. On the
horizontal axis, wages are estimated by city-sector-education group in Equation (24), then
averaged by city-sector, weighted by the count of workers in that education group.

As Figure 5 indicates, the average household that lives and works in a lower-wage city-

sector also tends to emit less carbon. In Appendix A.8, I disaggregate Figure 5 by education

group to reveal that the positive relationship between emissions and wages holds for college

and non-college workers considered separately.36

The positive cross-city correlation between emissions and wages has important implica-

tions for redistributing the revenue from a carbon tax. Often, policymakers and academics pro-

pose progressive transfers as a way to alleviate distributional concerns with pricing carbon.37

However, whether or not these transfers increase or decrease aggregate emissions depends on

both the correlation between wages and emissions and substitutions across the agent’s choice

sets.

Carbon Taxes with Transfer Payments. I extend the model so that the agent receives a trans-

fer equal to T (w). The agent’s post-transfer wage is then w̃e jn = we jn +T (w). One of the primary

36 Additionally, I disaggregate by education group and industry. For some industries, the relationship between
emissions and wages is positive.

37 See Carattini, Carvalho, and Fankhauser (2017) for an example.

30



goals of this paper is to capture the relationship between the progressivity of government trans-

fers and aggregate carbon emissions. Thus, for the transfer function, I use the parsimonious

specification employed by Heathcote, Storesletten, and Violante (2017) (henceforth HSV),

which is given by:

T (w) = λw1−γ
e jn

where λ > 0 is the overall level of the reimbursement and γ ≥ 1 indexes the progressivity

of the transfers.38 Note that when γ = 1, transfers are proportional to wages, and when

γ ≥ 1, transfers are decreasing in wages. A higher value of γ implies higher-wage agents

will receive smaller transfers. In counterfactuals with transfers, I append the definition of the

model’s equilibrium to include government-balanced budget condition. The balanced budget

assumption implies that λ is endogenously determined in equilibrium; more details are included

in Appendix A.2.3.

I use the model to numerically estimate the general equilibrium elasticity of aggregate

emissions with respect to the relative progressivity of transfers. I define this elasticity as:

εEmis,γ =
∂Emis

∂γ

γ

Emis
. (21)

Note that the level of transfers an agent receives may change the agent’s choice, which

impacts the agent’s emissions and thus aggregate emissions. Equation (21) is thus an implicit

function of effectively all of the model’s underlying parameters. If labor supply—especially non-

college labor supply—is highly mobile and responsive to changes in wages, then an increase

in γ will cause a larger change in emissions as more workers migrate or switch sectors. Firm

production parameters (and hence labor demand), energy, and rental supply all govern the full

extent of the price changes and hence aggregate emissions change. I estimate equation (21)

numerically by simulating the model under γ ∈ {1, 1.2, 1.4, 1.6}. I display the result from this

exercise graphically in figure 6 below.

38 If λ < 0 and γ < 1 then this is the familiar HSV tax function.
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Figure 6: : Simulated total emissions relative to lump-sum transfers plotted against the
progressivity parameter (γ). Simulated emissions are calculated in equilibrium as the sum of
total emissions from agents and firms across all cities and sectors.

Figure 6 illustrates that in the US, equity-of-transfers and aggregate carbon emissions are

inversely related. More specifically, I estimate εEmis,γ = −0.00104. Put differently, this indicates

that a 1% increase in the progressivity of the transfer system would result in approximately

a −0.001% decrease in aggregate emissions. I show the change in sectoral composition from

a carbon tax with lump-sum transfers (γ = 1) and a carbon tax with progressive transfers

(γ = 1.2) in Table 4.

γ = 1 %∆ Man. Emp %∆ Ser. Emp %∆ Con. Emp %∆ Ag. Emp

Total −11.8 2.42 1.57 −2.78

College −13.7 1.99 0.07 −3.51

Non-College −10.9 2.80 1.7 −2.62

γ = 1.2
Total −11.9 2.49 1.36 −1.86

College −13.8 2.03 0.05 −2.78

Non-College −11.1 2.91 1.5 −1.65

Table 4: Change in sectoral employment in aggregate and by education group for a $31
carbon tax with transfers relative to a $31 carbon tax with no transfers.

As shown in section 3, cities and sectors with lower wages also tend to have lower carbon

emissions. Thus, more progressive transfers induce a larger share of agents to move into greener
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cities and sectors, lowering aggregate emissions.39 When γ = 1.2, I find that manufacturing

employment declines by 11.9% (compared to 11.8% with lump-sum transfers) and services

employment increases by 2.49% (compared to 2.42% with lump-sum transfers). The model also

predicts modest increases in construction employment (1.57%) and decreases in agricultural

employment (2.78%). These results suggest that carbon tax policies with progressive transfers

have the added benefit of modestly reducing aggregate emissions due to the compositional

changes in the workforce the transfers induce.

7 Conclusions

In this paper, I estimate the distributional effects of a uniform national carbon tax. To accom-

plish this, I estimated a model of worker sorting across cities and sectors, in which imperfectly

mobile agents that vary by education level consume a numeraire good, energy, and housing.

The model incorporates the incidence of a carbon tax, including endogenous wages, rents, and

electricity prices. To take the model to the data, I utilized a combination of estimation and

calibration.

There are three main takeaways from the counterfactual exercises. First, the incidence of

a carbon tax exhibits substantial spatial and sectoral heterogeneity- workers in manufacturing

experience a much greater tax burden than workers in the less carbon-intensive services sector.

Overall, I found that a carbon tax has a mean compensating variation of $926 for college

workers and $1,417 for non-college workers.

Second, the share of this incidence attributable to coal varies across space. Coal has a

larger share of the total burden in some coal-dependent regions, such as the Midwest, par-

ticularly for non-college-educated workers. Others, like New England, have a small share of

the burden attributable to coal. These findings imply that policymakers will need to adjust

expected compensation with tax revenues as the grid decarbonizes at potentially different rates

across space. Lastly, I document a new relationship between equity and emissions: aggregate

emissions fall as compensation becomes more equitable. Since lower-wage city-sectors are less

carbon-intensive, progressive transfers induce a larger share of workers into these cities and

sectors. This relationship suggests that progressive transfers may have the added benefit of

helping achieve emissions targets.

Despite the detailed heterogeneity included in the model, I have made several simplifying

assumptions in my analysis. I make two strong assumptions about capital in the production

function. First, I assume the elasticity of substitution between capital and other inputs is one

(e.g., the production function is Cobb-Douglas in capital and other inputs). Second, I assume

39 If the relationship between wages and emissions were negative, then there would be an equity-emissions trade-off.
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capital is traded on international markets, and there are no differences in local prices. Comple-

mentarity between capital and energy may have important implications for the distribution of

carbon tax incidence. Third, I assume perfectly competitive input and output markets. Hetero-

geneity in market power across cities and sectors could bias my estimates of the tax incidence.

In addition, I use natural gas and electricity as primary fuel inputs for firms; while this may

be reasonable for many sectors, it certainly underestimates the effects of carbon pricing on

agriculture since a large share of agricultural carbon emissions are from livestock. Future work

could extend the model to extend the production function to incorporate these features.

My results speak to the importance of considering place-based incidence when designing

federal policy. While much of the literature has identified negligible employment effects, I

note that even if on net the number of jobs is the same or increases, reallocation is costly. My

model provides insights on the mechanisms via which space-sectoral heterogeneity would arise

from the tax, and my empirical results substantiate the claim of costly-re-allocation of labor.

Understanding the heterogeneity in tax incidence is paramount for policymakers looking to

reduce the current political headwinds with carbon pricing. As Sallee (2019) notes, “...the

failure to create a Pareto improvement is due to a prediction problem; lump-sum transfers can

only undo the distribution of burdens if they can be targeted precisely.” Due to the rich level of

heterogeneity in the model and hence results, the estimates from this paper may help design

more precisely targeted compensation.
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A Appendix

A.1 Model Appendix

A.1.1 Firm FOC Derivation

This section derives the first order conditions for the firms. Recall that firms in city j and sector

n produce according to

Y jn = A jnKη
jnI

1−η
jn ,

where I jn is the CES aggregator between energy and labor inputs. Specifically,

I jn =

(
α jnE

ρn
el

jn + (1 − α jn)L
ρn

el
jn

) 1
ρn

el ,

where

E jn =
(
ζ jnEρn

e
jn + (1 − ζ jn)Gρn

e
jn

) 1
ρn

e

L jn =
(
θ jnCρl

jn + (1 − θ jn)Lρl
jn

) 1
ρl .

Note that I assume factor markets are perfectly competitive so input prices are equal to

their marginal products. The firm’s profit function is given by:

π jn = PnA jnKη
jnI

1−η
jn −WC

jnC jn −WL
jnL jn − PG

jnG jn − PE
jnE jn. (22)

Differentiating equation 22 with respect to each of the firm’s inputs yields the following

expressions for energy prices (denoted by PE
jn and PG

jn) and pre-tax wages (WC
jn and WL

jn):

PE
jn =

(
Y jn

I jn

)
I

1−ρn
el

jn α jn(1 − η)ζ jnEρn
e−1

jn

P f
jn =

(
Y jn

I jn

)
I

1−ρn
el

jn α jn(1 − η)(1 − ζ jn)Gρn
e−1

jn

WC
jn =

(
Y jn

I jn

)
I

1−ρn
el

jn (1 − α jn)(1 − η)(θ jn)Cρl−1
jn

WL
jn =

(
Y jn

I jn

)
I

1−ρn
el

jn (1 − α jn)(1 − η)(1 − θ jn)Lρl−1
jn .

I assume that capital supply is perfectly elastic and has rental rate r̄. The firm chooses its level
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of capital such that the price is equal to the marginal product. Specifically, this is given by

K jn =

PnA jnηI
1−η
jn

r̄


1

1−η

. (23)

Plugging equation 23 into the FOC’s and rearranging yields the desired FOC’s as in equa-

tion 8.

A.1.2 Firm Parameters

In this section, I outline my estimation and calibration of the production function parameters.

I break this into the three following sections: labor, energy, and calibration.

Labor Parameters. I need city-sector wages, labor elasticity of substitution (σl), and factor

intensities (θ jn’s). Let e ∈ {C, L} index worker education levels. A worker of demographic d’s

income in location j and sector n is given by

Ie jn = We jn`
e (24)

where `e is the number of efficiency units of labor supplied by a worker of education level e.

I parameterize `e as the probability that a worker of education level e in city j and sector n is

unemployed (denoted by πe jn) multiplied by the efficiency units. That is

`e = πe jn ˆ̀e, (25)

where I parameterize ˆ̀e as

ˆ̀e = white
βe

1
i over35

βe
2

i . (26)

Conditional on working, the workers pre-tax income is given by plugging in equation 25 into

equation 24 and taking logs:

log(Ie jn) = log(We jn) + βe
1 log(whitei) + βe

2 log(over35i). (27)

I thus estimate city-sector-demographic wages using equation 27. Specifically, I estimate:

log(Ie jn) = νe jn + βe
1 log(whitei) + βe

2 log(over35i) + εi jn, (28)
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where νe jn is a city-sector fixed effect (which estimates log(We jn) ). I estimate equation 28 using

individual data from the ACS. To account for variation in unemployment across city-sectors, I

then weight the estimated wages by the employment rate in the CBSA-sector. This is calculated

directly from the ACS data.

The remaining labor parameters to be calibrated are the labor elasticity of substitution σl

and the labor input use intensities, θ jn. Note that the log wage ratio is given by

log

 IC
jn

IL
jn

︸    ︷︷    ︸
Estimated

= −
1
σl︸︷︷︸

Calibrated

log
(
C jn

L jn

)
︸     ︷︷     ︸

Data

+ log
(

θ jn

1 − θ jn

)
︸          ︷︷          ︸

Unknown

. (29)

Note that the only unknowns in equation 29 are the θ jn values. I can solve for these as:

θ jn =
B jn

1 + B jn
(30)

where

B jn =

 IC
jn

IL
jnl

 (C jn

L jn

)σl

.

Energy Parameters. Similar to above, the log ratio of energy prices is given by

log

PE
jn

PG
jn

︸     ︷︷     ︸
data

= −
1
σe︸︷︷︸

Calibrated

log
(

E jn

G jn

)
︸     ︷︷     ︸

Data

+ log
(

ζ jn

1 − ζ jn

)
︸         ︷︷         ︸

Unknown

. (31)

As with the labor parameters, I solve for the factor intensities using equation 31. Specifi-

cally,

ζ jn =
Z jn

1 + Z jn
, (32)

where
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Z jn =

PE
jn

P f
jn


(

E jn

G jn

)σe

.

After recovering the ζn and θ jn, I can recover the final set of input intensities: the α jn. The ratio

of the price of electricity to college educated labor is given by:

log

 PE
jn

WC
jn

︸      ︷︷      ︸
data

= log

Eρn
e−1

jn

Cρl−1
jn

︸        ︷︷        ︸
Data

+ log

E
ρeln−ρn

e
jn

L
ρn

el−ρl

jn

︸           ︷︷           ︸
data

+ log
(
ζ jn

θ jn

)
︸    ︷︷    ︸

Solved above

+ log
(

α jn

1 − α jn

)
︸          ︷︷          ︸

Unknown

. (33)

Thus I solve for these as:

α jn =
Q jn

1 + Q jn
, (34)

where

Q jn =

 PE
jn

WC
jn


Cρl−1

jn

Eρn
e−1

jn


(
θ jn

ζ jn

) L
ρn

el−ρl

jn

E
ρn

el−ρ
n
e

jn

 . (35)

The last set of parameters are the A jn values. I pick these to match the data (e.g. I invert the

first-order conditions now that I have all variables except for the TFP’s).

A.1.3 Rent Paramaters

Hedonic Rents. I construct a rental index for each city in my sample to make comparisons in

prices across CBSA’S more sensible. I regress individual gross log rent on a set of CBSA fixed

effects and housing characteristics. I include the number of bedrooms, the number of rooms,

household members per room, and the total number of units in the structure containing the

household. Specifically, the equation I estimate for individual i is given by:

log(Ri) = βCBS A(i) + β2Roomsi + β3Unitsi + β4Bedroomsi + β5

(
membersi

roomsi

)
+ εi. (36)
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I then take the average number of these characteristics across all CBSA’s and hold them

constant, and use the predicted value for each CBSA (generated from the fixed effects) as the

hedonic rental index.

Rent Parameters. After obtaining the rental index, I can calculate the remaining parameters in

the housing supply curve. The reduced-form relationship for the housing supply curve is given

by

log(R j) =
β j

1 + β j
log

∑
e

∑
n

Ne jn

(
αH

e × we jn)
)

αe jn

 + η j (37)

I first calculate R j using equation 36. I then calibrate β j using the values in Saiz (2010).40

For the two CBSA’s in my model in which do not overlap with Saiz’s elasticities (Honolulu &

Sacramento), I compute β j = β0 + β1WRI j where WRI j is the WRI for city j ∈ {Sac,Hono}. I take

parameter estimates of β0 and β1 from column VI, table III of Saiz (2010). I then choose η js to

match the data.

A.2 Household Energy

A.2.1 Baseline Consumption

I follow very closely to Glaeser and Kahn (2010) in constructing household emissions across

CBSAs. I estimate household level regressions using CBSA fixed effects to impute the predicted

energy use by CBSA. Specifically, I estimate:

xm
i = γCBSA(i) + β1 log(Incomei) + β2HHsizei + β2Ageheadi + εi. (38)

where xm
i is household i’s consumption of fuel type m ∈ {gas, elec, oil}, γCBSA(i) is a fixed effect

for the household’s CBSA, Incomei is the households income obtained from equation 29 and the

other variables are the same controls used in Glaeser and Kahn (2010). I adjust the estimated

coefficients by the composition of a cities single unit/multi-unit and home owned/rented com-

position to address the concern that rented homes and multi-family homes are less likely to pay

for energy themselves. The ACS has flags for whether the individual owns or rents the house,

and if they live in a single or multi-family home. I reweight the estimated coefficients by the

fraction of each of the four groups in every CBSA.

A.2.2 Energy Expenditure Shares

This section contains summary statistics for the model’s energy expenditure shares, or α̃m =
Pm×xm

W . The estimates can be found in Table 6.
40 Specifically, I use the estimates reported in Table VI.
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Expenditure Share on: College Non-College

Electricity
Mean (SD) 0.025 (0.013) 0.046 (0.018)
Range [0.005, 0.084] [0.014, 0.133]

Natural Gas
Mean (SD) 0.03 (0.03) 0.04 (0.05)
Range [0.00, 0.39] [0.00, 0.36]

Fuel-Oil
Mean (SD) 0.001 (0.003) 0.003 (0.005)
Range [0.000, 0.021] [0.000, 0.025]

Table 6: Estimated energy-expenditure shares for college and non-college workers,
respectively. Summary statistics are taken over the choice set (N=395). Estimates of energy
use of type m come from equation 38. Estimates of wages come from equation 28. State-level
electricity prices come from EIA data.

A.2.3 HSV Transfers

Let post-transfer income be given by:

w̃i j = wi j + λw1−γ
i j ,

where λ > 0 is the overall level of the reimbursement and γ > 1 indexes the progressivity of

the transfers.41 Note that the government’s total revenue from a carbon tax of τ is given by

T = τ
∑

n
∑

j δ j f̂ jn where again f̂ jn is total energy use in jn. Denote the household’s transfer as

gi = w1−γ
i j . In equilibrium, the sum of government transfers, G =

∑
i gi must be equal to total

revenue. I can solve for λ that satisfies the government budget constraint, λ?, by equating total

payments to total revenues:

λ?
∑

e

∑
j

N?
e jnw1−γ

e jn = τ
∑

n

∑
j

∑
m

δm
j f̂ m

jn

λ? =
τ
∑

n
∑

j
∑

m δ
m
j f̂ m

jn∑
e
∑

j N?
e jnw1−γ

e jn

.

Note that the allocation of workers across cities, N j and energy consumption, f̂ jn are

functions of λ in equilibrium. Computationally, I guess a value of λg and shares, calculate the

41 If λ < 0 and γ < 1 then this is a tax function.
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implied λ? and check if λ? = λg. If they are not equal I update my guess as a convex combination

of my original guess and λ?.

A.2.4 Model Fit: Energy Consumption

Figure 7 demonstrates model’s baseline fit for the three different fuel types for households:

electricity, natural gas, and fuel-oil.
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Figure 7: Baseline model fit for electricity, natural gas, and fuel-oil. The x-axis’ contains the
data city-sector fuel consumption (predicted from equation 38), and the y-axis has the
baseline equilibrium energy consumption in the model.

A.3 Energy Adjusted Budget Income

In this section, I derive the “energy-adjusted budget income,” wEA
e jnt =

log(we jnt) −
∑

m

(
α̃m

e jnt log(P jt)
)

1 −
∑

m α̃
m
e jnt

,

used in estimating equation 18, following Colas and Morehouse (2021). Recall that the mean

utility is given by:

δe jnt =

1 + αH
e +

∑
m α

m
e j

σe

 log(we jnt) −
αh

e

σe
log(R jt) −

∑
m

αm
e j

σe
log Pm

jt + ξe jnt,

Note that α̃m
e jnt =

αm
e jnt
αe jnt

implies that
∑

m′ α̃
m′
e jt =

∑
m′ α̃

m′
e jt(1+αh

e )

1−
∑

m′ α
m′
e jt

and thus αm
e jt =

α̃m
e jt(1+αh

e )

1−
∑

m′ ˜αe jt
m′ . I can plug

these into the mean utility equation to get:
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δe jnt =


1 + αh

e +
α̃m

e jt(1+αh
e )

1−
∑

m′ ˜αe jt
m′

σe

 log(we jnt) −
αh

e

σe
log(R jt) −

(1 + αh
e)

1 − 1 −
∑

m′ ˜αe jt
m′

∑
m

α̃m
e j

σe
log Pm

jt + ξe jnt.

Rearranging yields:

δe jnt = Θw
et log(wEA

e jnt) + Θr
et log(R j) + εe jn,

where wEA
e jnt =

log(we jnt) −
∑

m

(
α̃m

e jnt log(P jt)
)

1 −
∑

m α̃
m
e jnt

,Θw
e =

1+αh
e

σe
, Θr

e =
αh

e
σe

. Note that given estimates of

Θw
e and Θr

e, I can solve for αh
e and σe using the above equations.
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A.4 Estimation Summary

Parameter Name Notation Source

Labor Supply
Moving Costs Θdiv

e , Θdist
e , Θdist2

e MLE (equation 16)

Marginal Utility of Income/Rents Θw
e , Θ

r
e IV (equation 18)

Variance of pref. shock σe Algebra

Housing Parameter αH
e Algebra

Utility of Energy param αm
e jn Algebra

Wage Index We jn OLS (equation 28)

Firm Parameters
Energy-Lab EoS σn

el (Koesler and Schymura, 2012)

Gas- Elec EoS σn
e (Serletis, Timilsina, and Vasetsky, 2010)

College-No College EoS σl (Card, 2009)

Factor Intensities α jn,θ jn, ζ jn Relative demand curves

TFP A jn Firm FOCs

Energy and Rent Parameters
Intercepts β j, am j Algebra

Energy Supply Elasticity κ (Dahl and Duggan, 1996)

Rent Supply Elasticity γ j (Saiz, 2010)

Carbon Emissions Factor δm Data

Rent Index R j OLS (equation 36)

Table 7: Overview of calibration and estimation strategy for the model’s parameters.
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A.5 NERC Region Emissions Factors
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Carbon Emissions from Electricity Across NERC Regions

Figure 8: NERC regional electricity emissions factors. Emissions factors are calculated as
output-weighted averages of individual plant’s emissions rates.
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Figure 9: Change in NERC region emissions factors from electricity in the absence of coal
fueled power plants. Emissions factors are calculated as output-weighted averages of
individual plant’s emissions rates, for all plants in a region excluding coal.
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A.5.1 Heterogeneity in Incidence Across Space

Figure 10: The distribution of mean compensating variation across cities and sectors by
Census Region from a $31 per ton carbon tax. CV is measured in dollars.

Figure 11: The distribution of tax incidence (non-monetized) in utility across cities and
sectors by Census Region from a $31 per ton carbon tax.

49



-1.30% -1.20% -1.10%

College Tax Incidence

Figure 12: Tax incidence (non-monetized) across states from a $31 per ton carbon tax for
college educated households.

-4.00% -3.80% -3.60% -3.40%

Non-College Tax Incidence

Figure 13: Tax incidence (non-monetized) across states from a $31 per ton carbon tax for
non-college educated households.
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τ = $31/ton:

No Transfers Midwest Northeast South West

All −1, 290 1, 195 1, 255 1, 291

(309) (315) (321) (355)

College 971 967 962 178

(181) (218) (178) (257)

Non-College −1, 471 1, 404 1, 455 1, 508

(203) (235) (230) (257)

Table 8: Mean compensating variation across cities and sectors by Census Region from a $31
per ton carbon tax. Standard deviations are in parenthesis.

Table 9: Change in compensating variation from dropping coal across census regions from a
$31 per ton carbon tax.
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Table 10: Percent change in tax incidence (non-monetized) from dropping coal across census
regions from a $31 per ton carbon tax.
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A.5.2 Heterogeneity in Incidence Across Industries

In this section, I decompose the monetized (compensating variation) and non-monetized inci-

dence from a $31 dollar per ton carbon tax.

Figure 14: The distribution of mean compensating variation across cities by industries from a
$31 per ton carbon tax. CV is measured in dollars.

Figure 15: The distribution of tax incidence (non-monetized) across cities by industries from
a $31 per ton carbon tax.
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τ = $31/ton:

No Transfers Manufacturing Services Construction Agriculture

All −1, 446 1, 156 1, 491 1, 012

(263) (271) (304) (217)

College 1, 170 949 916 708

(224) (187) (151) (171)

Non-College −1, 565 1, 360 1, 598 1, 094

(174) (168) (180) (142)

Table 11: Mean compensating variation across cities by industry from a $31 per ton carbon
tax. Standard deviations are in parenthesis.
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A.5.3 Migration

In this section, I map out changes in population across cities from a $31 per ton carbon tax,

aggregated to the state level. My sample only includes 34 states, I use changes in population at

the Census division level for states with missing data, excluding the population changes from

the included CBSAs within the respective census division.

-2.00% -1.00% 0.00% 1.00%

Percent Change in Population

Figure 16: Population changes are computed using the equilibrium arising from the model
using a $31 per ton carbon tax.
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-0.80% -0.40% 0.00% 0.40%

Percent Change in College Population

Figure 17: Population changes are computed using the equilibrium arising from the model
using a $31 per ton carbon tax.

-3.00% -2.00% -1.00% 0.00% 1.00% 2.00%

Percent Change in Non College Population

Figure 18: Population changes are computed using the equilibrium arising from the model
using a $31 per ton carbon tax.
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A.5.4 Voting and Tax Incidence

This section provides plots that explore the relationship between carbon pricing incidence and

the share of the given CBSA that voted for Trump in the 2016 presidential election.
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Figure 19: An observation is a CBSA; the size of each observation reflects the total number of
voters in the 2016 presidential primary election in the CBSA. Tax incidence is measured as the
relative change in utility from a $31 per ton carbon tax, calculated using equation 20.
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Figure 20: An observation is a CBSA; the size of each observation reflects the total number of
voters in the 2016 presidential primary election in the CBSA. Compensating variation is
measured as the average dollar amount required to make a household indifferent to a $31 per
ton carbon tax, calculated using equation 20.
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A.6 Computational Appendix

A.6.1 Nested-Fixed-Point Algorithm

In this section, I outline the nested-fixed-point algorithm I use to obtain the preference param-

eters:

Θ∗ = arg max
Nd∑
i=1

∑
n∈N

∑
j∈J

Ii( j, n) log(δe jn, Pi(Θet)),

where Pi(δe jn,Θ
γe) is defined in equation 15. In what follows, let t denote iteration number

(not time). I proceed in the following manner:

Outer-Loop

(1) Start with an arbitrary guess of the parameter vector, Θ∗,0

Inner-Loop

(2) Guess an arbitrary level of mean utilities for each city-sector combo and education

level, δ0
e jn

(3) Given the guess of the parameter vector and mean utility, compute the model’s

predicted share of agent’s in each sector-city combo. This is given by

S 0
modele jn

=

Nd∑
i

Pi(δe jnt,Θet),

(4) Use the Nevo speedup (Nevo, 2000) of the contraction mapping from Berry (1994):

exp(δ1
e jn) = exp(δ0

e jn) ×

 S datae jn

S 0
modele jn

 , (39)

where S datae jn is the share of agents of education level e that choose city j and sector

n in the data. Note that equation 39 will converge for any guess of the parameter

vector and initial delta.

(5) Check for convergence of equation 39. Specifically, I check

sup
∣∣∣∣δ1

e jn − δ
0
e jn

∣∣∣∣ < ε.
If the equation hasn’t converged, update the new guess of δ to δ1 and go back to step

(3). Repeat 3-5 until delta has converged. This ends the inner-loop
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(6) After obtaining the unique δe jn for the guess of Θ∗,0, we can compute the value of the

likelihood function. Check to see if the likelihood function is maximized. If not, go back

to step (1). To update the guess of Θ∗, I use the Nelder-Mead algorithm.

A.6.2 Equilibrium Simulation

In this section, I outline how I solve for the counterfactual equilibrium.

(1) Guess a vector of wages, rents, residential electricity prices, industrial electricity demand,

and industrial natural gas demand.

(2) Given these guesses, calculated labor supply in each city using the implied choice shares

multiplied by the total population of college and non-college workers

(3) Calculate the value of the labor aggregator, the energy aggregator, and finally, the input

aggregator using the implied populations from step 2 and the guesses of industrial energy

consumption

(4) Calculate total housing demand using equation 37.

(5) Check if the new vectors of wages, rents, and residential energy prices and industrial

energy consumption from steps 3 and 4 are within ε of the guess made in step 1. If not,

return to step 1, using updated guesses that are convex combinations of the old guess

and new prices that come from the firm’s FOC and rent equations. To update the guess

of industrial gas demand, I check if the price from the firm’s FOC matches the data prices.

If not, I update the new guess of industrial gas to be larger than the old. If so, I update it

to be smaller. For electricity, I use the same process but compare the firm’s FOC prices to

city-level supply prices (generated by the supply curve) and update accordingly.
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A.7 Data Appendix

A.7.1 Labor Supply & Demand

Cleaning. My sample consists of all non-military, non-institutionalized, employed, (16-64)

individuals. I drop all observations with missing or negative incomes. Additionally, I drop

all workers, not in the 10 sectors described in the model section. A household is defined by

the ACS variable SERIAL, which assigns all individuals in a household the same number. The

decision-maker in the model is the “household head” (given by the IPUMS variable RELATE).

Geography. I construct the labor supply and demand from the 5-year aggregated ACS 2012-

2016 data. My geographic unit of observation is a “Core-Based Statistical Area” (CBSA). I

follow closely in other literature in constructing the sample to make it more comparable to

other papers. Specifically, I choose the 70 largest CBSA’s, as defined by the population in 1980.

I then map individuals that do not live in one of these 70 CBSA’s into their corresponding census

division, creating an additional 9 choices. Thus the model consists of 79 unique, geographic

choices. All wage estimates and choice counts are weighted by the exogenous sampling weights

provided by the ACS.

Industry. To construct the model’s industries, I use the “INDNAICS” variable from the ACS.

While the ACS has NAICS codes at the 6-digit (least aggregated), I constrain the model to

contain 10 sectors: services, construction, transportation, the balance of manufacturing, agri-

culture, metals, foods, chemicals, mining, and plastics. These sectors contain over 80% of total

US employment.

A.7.2 City-Sector Energy Use

In this section, I detail how I assign energy consumption by city-sector to firms in the base-

line case. I observe energy consumption by sector at the national level from the EIA data.

Additionally, the EIA has utility-level electricity and natural gas use by aggregated industrial,

commercial, and residential sectors. I construct a sector n’s consumption of electricity (natural

gas) as proportional to the city-sectors share of aggregate employment. Note that for sectoral

employment, Ln, I use BLS data. For the numerator, L jn, I use counts from my sample. Since En

is aggregated across all US cities, using the fraction of workers in my sample across the whole

US adjusts firm energy consumption to my match my subset of households. Specifically, firm
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electricity and gas consumption is given by:

E jn =
L jn

Ln
∗ En

G jn =
L jn

Ln
∗Gn.

A.8 Additional Scatterplots

In this section I disaggregate figure 5 by education group in figure 21 and then by education

group and sector in 22.
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Figure 21: Total emissions per capita across city-sector plotted against wages. Wages are
constructed as city level averages estimated from equation 28. Emissions are the sum of firm
emissions per capita and household emissions for a given education group.
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Figure 22: Total emissions per capita by city across industries plotted against wages. Wages
are constructed as city level averages estimated from equation 28. Emissions are the sum of
firm emissions per capita and household emissions for a given education group.

A.9 Sector Energy Demand

The EIA classifies the Industrial and Commercial sector in the following manner:

• Industrial sector: An energy-consuming sector that consists of all facilities

and equipment used for producing, processing, or assembling goods. The

industrial sector encompasses the following types of activity manufacturing

(NAICS codes 31-33); agriculture, forestry, fishing and hunting (NAICS code

11); mining, including oil and gas extraction (NAICS code 21); and construc-

tion (NAICS code 23). Overall energy use in this sector is largely for process

heat and cooling and powering machinery, with lesser amounts used for facility

heating, air conditioning, and lighting. Fossil fuels are also used as raw mate-

rial inputs to manufactured products. Note: This sector includes generators

that produce electricity and/or useful thermal output primarily to support the

above-mentioned industrial activities. Various EIA programs differ in sectoral

coverage.

• Commercial Sector: An energy-consuming sector that consists of service-

providing facilities and equipment of businesses; Federal, State, and local

governments; and other private and public organizations, such as religious,

social, or fraternal groups. The commercial sector includes institutional liv-

ing quarters. It also includes sewage treatment facilities. Common uses of
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energy associated with this sector include space heating, water heating, air

conditioning, lighting, refrigeration, cooking, and running a wide variety of

other equipment. Note: This sector includes generators that produce elec-

tricity and/or useful thermal output primarily to support the activities of the

above-mentioned commercial establishments.
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